The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Direct summands of Goldie extending elements in modular lattices”

Goldie extending elements in modular lattices

Shriram K. Nimbhorkar, Rupal C. Shroff (2017)

Mathematica Bohemica

Similarity:

The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations...

Orthogonality and complementation in the lattice of subspaces of a finite vector space

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

Similarity:

We investigate the lattice 𝐋 ( 𝐕 ) of subspaces of an m -dimensional vector space 𝐕 over a finite field GF ( q ) with a prime power q = p n together with the unary operation of orthogonality. It is well-known that this lattice is modular and that the orthogonality is an antitone involution. The lattice 𝐋 ( 𝐕 ) satisfies the chain condition and we determine the number of covers of its elements, especially the number of its atoms. We characterize when orthogonality is a complementation and hence when 𝐋 ( 𝐕 ) is orthomodular....

Modular lattices from finite projective planes

Tathagata Basak (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Using the geometry of the projective plane over the finite field 𝔽 q , we construct a Hermitian Lorentzian lattice L q of dimension ( q 2 + q + 2 ) defined over a certain number ring 𝒪 that depends on q . We show that infinitely many of these lattices are p -modular, that is, p L q ' = L q , where p is some prime in 𝒪 such that | p | 2 = q . The Lorentzian lattices L q sometimes lead to construction of interesting positive definite lattices. In particular, if q 3 mod 4 is a rational prime such that ( q 2 + q + 1 ) is norm of some element in...

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

Similarity:

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Generalized divisor problem for new forms of higher level

Krishnarjun Krishnamoorthy (2022)

Czechoslovak Mathematical Journal

Similarity:

Suppose that f is a primitive Hecke eigenform or a Mass cusp form for Γ 0 ( N ) with normalized eigenvalues λ f ( n ) and let X > 1 be a real number. We consider the sum 𝒮 k ( X ) : = n < X n = n 1 , n 2 , ... , n k λ f ( n 1 ) λ f ( n 2 ) ... λ f ( n k ) and show that 𝒮 k ( X ) f , ϵ X 1 - 3 / ( 2 ( k + 3 ) ) + ϵ for every k 1 and ϵ > 0 . The same problem was considered for the case N = 1 , that is for the full modular group in Lü (2012) and Kanemitsu et al. (2002). We consider the problem in a more general setting and obtain bounds which are better than those obtained by the classical result of Landau (1915) for k 5 . Since the result is valid...

The module of vector-valued modular forms is Cohen-Macaulay

Richard Gottesman (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H denote a finite index subgroup of the modular group Γ and let ρ denote a finite-dimensional complex representation of H . Let M ( ρ ) denote the collection of holomorphic vector-valued modular forms for ρ and let M ( H ) denote the collection of modular forms on H . Then M ( ρ ) is a -graded M ( H ) -module. It has been proven that M ( ρ ) may not be projective as a M ( H ) -module. We prove that M ( ρ ) is Cohen-Macaulay as a M ( H ) -module. We also explain how to apply this result to prove that if M ( H ) is a polynomial ring, then...

Group algebras whose groups of normalized units have exponent 4

Victor Bovdi, Mohammed Salim (2018)

Czechoslovak Mathematical Journal

Similarity:

We give a full description of locally finite 2 -groups G such that the normalized group of units of the group algebra F G over a field F of characteristic 2 has exponent 4 .

Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice

Lifeng Li, Jianke Zhang, Chang Zhou (2019)

Kybernetika

Similarity:

For a t-norm T on a bounded lattice ( L , ) , a partial order T was recently defined and studied. In [11], it was pointed out that the binary relation T is a partial order on L , but ( L , T ) may not be a lattice in general. In this paper, several sufficient conditions under which ( L , T ) is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on L such that ( L , T ) is a lattice are presented.

Self-intersection of the relative dualizing sheaf on modular curves X 1 ( N )

Hartwig Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let N be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than 4 . Our main theorem is an asymptotic formula solely in terms of N for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves X 1 ( N ) / . From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian J 1 ( N ) / of X 1 ( N ) / , and, for sufficiently large N , an effective version of Bogomolov’s conjecture for X 1 ( N ) / . ...

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Similarity:

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .

On higher moments of Hecke eigenvalues attached to cusp forms

Guodong Hua (2022)

Czechoslovak Mathematical Journal

Similarity:

Let f , g and h be three distinct primitive holomorphic cusp forms of even integral weights k 1 , k 2 and k 3 for the full modular group Γ = SL ( 2 , ) , respectively, and let λ f ( n ) , λ g ( n ) and λ h ( n ) denote the n th normalized Fourier coefficients of f , g and h , respectively. We consider the cancellations of sums related to arithmetic functions λ g ( n ) , λ h ( n ) twisted by λ f ( n ) and establish the following results: n x λ f ( n ) λ g ( n ) i λ h ( n ) j f , g , h , ε x 1 - 1 / 2 i + j + ε for any ε > 0 , where 1 i 2 , j 5 are any fixed positive integers.