Page 1

Displaying 1 – 7 of 7

Showing per page

Collisions and fractures: a model in S B D

Elena Bonetti, Michel Frémond (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We investigate collisions (assumed to be instantaneous) and fractures of three-dimensional solids. Equations of motion and constitutive laws provide a set of partial differential equations, whose corresponding variational problem may be solved in the space of special functions with bounded deformations ( S B D ), exploiting the direct method of calculus of variations.

Comparison of crack propagation criteria in linear elastic fracture mechanics

Mikeš, Karel (2015)

Programs and Algorithms of Numerical Mathematics

In linear fracture mechanics, it is common to use the local Irwin criterion or the equivalent global Griffith criterion for decision whether the crack is propagating or not. In both cases, a quantity called the stress intensity factor can be used. In this paper, four methods are compared to calculate the stress intensity factor numerically; namely by using the stress values, the shape of a crack, nodal reactions and the global energetic method. The most accurate global energetic method is used to...

Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes

Christian Heinemann, Christiane Kraus (2014)

Mathematica Bohemica

This paper addresses analytical investigations of degenerating PDE systems for phase separation and damage processes considered on nonsmooth time-dependent domains with mixed boundary conditions for the displacement field. The evolution of the system is described by a degenerating Cahn-Hilliard equation for the concentration, a doubly nonlinear differential inclusion for the damage variable and a quasi-static balance equation for the displacement field. The analysis is performed on a time-dependent...

Generalised functions of bounded deformation

Gianni Dal Maso (2013)

Journal of the European Mathematical Society

We introduce the space G B D of generalized functions of bounded deformation and study the structure properties of these functions: the rectiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for G B D , which leads to a compactness result for the space G S B D of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation of some variational...

Multiscale Materials Modelling: Case Studies at the Atomistic and Electronic Structure Levels

Emilio Silva, Clemens Först, Ju Li, Xi Lin, Ting Zhu, Sidney Yip (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Although the intellectual merits of computational modelling across various length and time scales are generally well accepted, good illustrative examples are often lacking. One way to begin appreciating the benefits of the multiscale approach is to first gain experience in probing complex physical phenomena at one scale at a time. Here we discuss materials modelling at two characteristic scales separately, the atomistic level where interactions are specified through classical potentials and the...

Solution of mechanical problems in fractured rock with the user-defined interface of COMSOL multiphysics

Škarydová, Ilona, Hokr, Milan (2015)

Programs and Algorithms of Numerical Mathematics

This paper presents the main concept and several key features of the user-defined interface of COMSOL Java API for the solution of mechanical problems in fractured rock. This commercial computational system based on FEM has yet to incorporate fractures in mechanical problems. Our aim is to solve a 2D mechanical problem with a fracture which is defined separately from finite-element discretization and the fracture properties are included through the constitutive laws. This will be performed based...

Currently displaying 1 – 7 of 7

Page 1