Non-local damage modelling of quasi-brittle composites
Applications of Mathematics (2021)
- Volume: 66, Issue: 6, page 815-836
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVala, Jiří, and Kozák, Vladislav. "Non-local damage modelling of quasi-brittle composites." Applications of Mathematics 66.6 (2021): 815-836. <http://eudml.org/doc/297977>.
@article{Vala2021,
abstract = {Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc. loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying the dynamical approach using the Kelvin viscoelastic model and cohesive interface properties. The existence and convergence results rely on the semilinear computational scheme coming from the method of discretization in time, using several types of Rothe sequences, coupled with the extended finite element method (XFEM) for practical calculations. Numerical examples refer to cementitious samples reinforced by short steel fibres, with increasing number of applications as constructive parts in civil engineering.},
author = {Vala, Jiří, Kozák, Vladislav},
journal = {Applications of Mathematics},
keywords = {quasi-brittle composite; steel fibre concrete; micro- and macro-fracture; non-local viscoelasticity; cohesive interface; partial differential equations of evolution; method of discretization in time; extended finite element method},
language = {eng},
number = {6},
pages = {815-836},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-local damage modelling of quasi-brittle composites},
url = {http://eudml.org/doc/297977},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Vala, Jiří
AU - Kozák, Vladislav
TI - Non-local damage modelling of quasi-brittle composites
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 6
SP - 815
EP - 836
AB - Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc. loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying the dynamical approach using the Kelvin viscoelastic model and cohesive interface properties. The existence and convergence results rely on the semilinear computational scheme coming from the method of discretization in time, using several types of Rothe sequences, coupled with the extended finite element method (XFEM) for practical calculations. Numerical examples refer to cementitious samples reinforced by short steel fibres, with increasing number of applications as constructive parts in civil engineering.
LA - eng
KW - quasi-brittle composite; steel fibre concrete; micro- and macro-fracture; non-local viscoelasticity; cohesive interface; partial differential equations of evolution; method of discretization in time; extended finite element method
UR - http://eudml.org/doc/297977
ER -
References
top- Altan, S. B., Existence in nonlocal elasticity, Arch. Mech. 41 (1989), 25-36. (1989) Zbl0725.73022MR1065652
- Babuška, I., Melenk, J. M., 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N, Int. J. Numer. Methods Eng. 40 (1997), 727-758. (1997) Zbl0949.65117MR1429534DOI10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
- Belytschko, T., Black, T., 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S, Int. J. Numer. Methods Eng. 45 (1999), 601-620. (1999) Zbl0943.74061DOI10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Castro, A. Bermúdez de, 10.1007/3-7643-7383-0, Progress in Mathematical Physics 43. Birkhäuser, Basel (2005). (2005) Zbl1070.74001MR2145925DOI10.1007/3-7643-7383-0
- Bhatia, G. S., Arora, G., 10.17485/ijst/2016/v9i45/105079, Indian J. Sci. Technol. 9 (2016), Article ID 45, 18 pages. (2016) DOI10.17485/ijst/2016/v9i45/105079
- Bouhala, L., Makradi, A., Belouettar, S., Kiefer-Kamal, H., Fréres, P., 10.1016/j.compositesb.2012.12.013, Composites B, Eng. 55 (2013), 352-361. (2013) DOI10.1016/j.compositesb.2012.12.013
- Bunkure, J. K., Lebesgue-Bochner spaces and evolution triples, Int. J. Math. Appl. 7 (2019), 41-52. (2019)
- Cianchi, A., Maz'ya, V., 10.1016/j.aim.2016.02.012, Adv. Math. 293 (2016), 644-696. (2016) Zbl1346.46022MR4074620DOI10.1016/j.aim.2016.02.012
- Clark, D. S., 10.1016/0166-218X(87)90064-3, Discrete Appl. Math. 16 (1987), 279-281. (1987) Zbl0612.39004MR0878027DOI10.1016/0166-218X(87)90064-3
- Maso, G. Dal, Lazzaroni, G., 10.3934/dcds.2011.31.1219, Discrete Contin. Dyn. Syst. 31 (2011), 1219-1231. (2011) Zbl1335.74051MR2836349DOI10.3934/dcds.2011.31.1219
- Piero, G. Del, Owen, D. R., 10.1007/BF00375133, Arch. Ration. Mech. Anal. 124 (1993), 99-155. (1993) Zbl0795.73005MR1237908DOI10.1007/BF00375133
- Dlouhý, L., Pouillon, S., Application of the design code for steel-fibre-reinforced concrete into finite element software, Beton 116 (2020), 8-13. (2020)
- Drábek, P., Milota, J., 10.1007/978-3-0348-0387-8, Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Basel (2013). (2013) Zbl1264.35001MR3025694DOI10.1007/978-3-0348-0387-8
- Eliáš, J., Vořechovský, M., Skoček, J., Bažant, Z. P., 10.1016/j.engfracmech.2015.01.004, Eng. Fract. Mech. 135 (2015), 1-16. (2015) DOI10.1016/j.engfracmech.2015.01.004
- Emmrich, E., Puhst, D., 10.1088/0951-7715/28/1/285, Nonlinearity 28 (2015), 285-307. (2015) Zbl1312.35163MR3297136DOI10.1088/0951-7715/28/1/285
- Eringen, A. C., Theory of Nonlocal Elasticity and Some Applications, Technical Report 62. Princeton University Press, Princeton (1984). (1984)
- Eringen, A. C., 10.1007/b97697, Springer, New York (2002). (2002) Zbl1023.74003MR1918950DOI10.1007/b97697
- Evgrafov, A., Bellido, J. C., 10.1177/1081286518810745, Math. Mech. Solids 24 (2019), 1935-1953. (2019) Zbl1425.74093MR3954360DOI10.1177/1081286518810745
- Fries, T.-P., Belytschko, T., 10.1002/nme.1761, Int. J. Numer. Methods Eng. 68 (2006), 1358-1385. (2006) Zbl1129.74045DOI10.1002/nme.1761
- Gao, Z., Zhang, L., Yu, W., 10.1016/j.engfracmech.2017.10.019, Eng. Fract. Mech. 189 (2018), 481-500. (2018) DOI10.1016/j.engfracmech.2017.10.019
- Giry, C., Dufour, F., Mazars, J., 10.1016/j.ijsolstr.2011.08.012, Int. J. Solids Struct. 48 (2011), 3431-3443. (2011) DOI10.1016/j.ijsolstr.2011.08.012
- Grija, S., Shanthini, D., Abinaya, S., A review on fiber reinforced concrete, Int. J. Civil Eng. Technol. 7 (2016), 386-392. (2016)
- Hashiguchi, K., 10.1007/978-3-642-35849-4, Lecture Notes in Applied and Computational Mechanics 69. Springer, Berlin (2014). (2014) Zbl1318.74001MR3235845DOI10.1007/978-3-642-35849-4
- Havlásek, P., Grassl, P., Jirásek, M., 10.1016/j.engfracmech.2016.02.029, Eng. Fract. Mech. 157 (2016), 72-85. (2016) DOI10.1016/j.engfracmech.2016.02.029
- Hoekstra, A., Design methodologies for steel-fibre-reinforced concrete and a new methodology for a real time quality control, Beton 116 (2020), 44-49. (2020)
- Horgan, C. O., 10.1016/0022-247X(79)90190-2, J. Math. Anal. Appl. 69 (1979), 231-242. (1979) Zbl0412.35073MR0535293DOI10.1016/0022-247X(79)90190-2
- Javili, A., Morasata, R., Oterkus, E., Oterkus, S., 10.1177/1081286518803411, Math. Mech. Solids 24 (2019), 3714-3739. (2019) Zbl07273389MR4000179DOI10.1177/1081286518803411
- Jirásek, M., 10.1007/978-3-7091-0897-0_1, Numerical Modeling of Concrete Cracking CISM Courses and Lectures 532. Springer, Wien (2011), 1-49. (2011) Zbl1247.74055DOI10.1007/978-3-7091-0897-0_1
- Kaliske, M., Dal, H., Fleischhauer, R., Jenkel, C., Netzker, C., 10.1007/s00466-011-0578-5, Comput. Mech. 50 (2012), 303-320. (2012) Zbl1398.74347MR2967876DOI10.1007/s00466-011-0578-5
- Kawde, P., Warudkar, A., 10.5281/zenodo.233321, Int. J. Eng. Sci. Res. Technol. 6 (2017), 130-133. (2017) DOI10.5281/zenodo.233321
- Khoei, A. R., 10.1002/9781118869673, Wiley Series in Computational Mechanics. John Wiley & Sons, New York (2015). (2015) Zbl1315.74001DOI10.1002/9781118869673
- Kozák, V., Chlup, Z., 10.4028/www.scientific.net/KEM.465.231, Key Eng. Materials 465 (2011), 231-234. (2011) DOI10.4028/www.scientific.net/KEM.465.231
- Kozák, V., Chlup, Z., Padělek, P., Dlouhý, I., 10.4028/www.scientific.net/SSP.258.186, Solid State Phenomena 258 (2017), 186-189. (2017) DOI10.4028/www.scientific.net/SSP.258.186
- Lazar, M., Maugin, G. A., Aifantis, E. C., 10.1016/j.ijsolstr.2005.04.027, Int. J. Solids Struct. 43 (2006), 1404-1421. (2006) Zbl1120.74342MR2200992DOI10.1016/j.ijsolstr.2005.04.027
- Lazzaroni, G., 10.1007/s10231-010-0145-2, Ann. Mat. Pura Appl. (4) 190 (2011), 165-194. (2011) Zbl1215.35156MR2747470DOI10.1007/s10231-010-0145-2
- Li, X., Chen, J., 10.1016/j.cma.2016.11.029, Comput. Methods Appl. Mech. Eng. 315 (2017), 744-759. (2017) Zbl1439.74334MR3595276DOI10.1016/j.cma.2016.11.029
- Li, X., Gao, W., Liu, W., 10.1177/1056789518823876, Int. J. Damage Mech. 28 (2019), 1299-1322. (2019) DOI10.1177/1056789518823876
- Macek, R. W., Silling, S. A., 10.1016/j.finel.2007.08.012, Finite Elem. Anal. Des. 43 (2007), 1169-1178. (2007) MR2393568DOI10.1016/j.finel.2007.08.012
- Majdisova, Z., Skala, V., 10.1016/j.apm.2017.07.033, Appl. Math. Modelling 51 (2017), 728-743. (2017) Zbl07166287MR3694560DOI10.1016/j.apm.2017.07.033
- Mielke, A., Roubíček, T., 10.1007/978-1-4939-2706-7, Applied Mathematical Sciences 193. Springer, New York (2015). (2015) Zbl1339.35006MR3380972DOI10.1007/978-1-4939-2706-7
- Moradi, M., Bagherieh, A. R., Esfahani, M. R., 10.1177/1056789519851159, Int. J. Damage Mech. 29 (2020), 388-412. (2020) DOI10.1177/1056789519851159
- Morandotti, M., 0.1007/978-981-10-6283-4_11, Mathematical Analysis of Continuum Mechanics and Industrial Applications II Springer, Singapore (2018), 125-136. (2018) DOI0.1007/978-981-10-6283-4_11
- Nakamura, N., 10.3389/fbuil.2016.00014, Front. Built Environ. 2 (2016), Article ID 14, 13 pages. (2016) DOI10.3389/fbuil.2016.00014
- R. H. J. Peerlings, R. de Borst, W, A. M. Brekelmans, M. Geers, 10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z, Mech. Cohesive-frictional Mater. 3 (1998), 323-342. (1998) DOI10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
- Pijaudier-Cabot, G., Mazars, J., 10.1016/B978-012443341-0/50056-9, Handbook of Materials Behavior Models. Volume II Academic Press, London (2001), 500-512 J. Lemaitre. (2001) DOI10.1016/B978-012443341-0/50056-9
- Pike, M. G., Oskay, C., 10.1016/j.finel.2015.07.007, Finite Elem. Anal. Des. 106 (2005), 16-31. (2005) DOI10.1016/j.finel.2015.07.007
- Povstenko, Yu. Z., 10.1007/BF02364923, J. Math. Sci. 97 (1999), 3840-3845. (1999) DOI10.1007/BF02364923
- Ray, P., 10.1098/rsta.2017.0396, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 377 (2019), Article ID 20170396, 13 pages. (2019) DOI10.1098/rsta.2017.0396
- Rektorys, K., The Method of Discretization in Time and Partial Differential Equations, Mathematics and Its Applications 4. D. Reidel, Dordrecht (1982). (1982) Zbl0505.65029MR0689712
- Roubíček, T., Nonlinear Partial Differential Equations with Applications, ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). (2005) Zbl1087.35002MR2176645
- Roubíček, T., 10.1137/080729992, SIAM J. Math. Anal. 42 (2010), 256-297. (2010) Zbl1213.35279MR2596554DOI10.1137/080729992
- Šilhavý, M., 10.2140/memocs.2017.5.191, Math. Mech. Complex Syst. 5 (2017), 191-215. (2017) Zbl1447.49026MR3669123DOI10.2140/memocs.2017.5.191
- Su, X. T., Yang, Z. J., Liu, G. H., 10.1016/j.ijsolstr.2010.04.031, Int. J. Solids Struct. 47 (2010), 2336-2345. (2010) Zbl1194.74313DOI10.1016/j.ijsolstr.2010.04.031
- Sumi, Y., 10.1007/978-4-431-54935-2, Mathematics for Industry (Tokyo) 2. Springer, Tokyo (2014). (2014) Zbl1395.74001MR3234571DOI10.1007/978-4-431-54935-2
- Svenning, E., Larsson, F., Fagerström, M., 10.1016/j.compstruc.2018.08.003, Comput. Struct. 211 (2019), 43-54. (2019) DOI10.1016/j.compstruc.2018.08.003
- Swati, R. F., Wen, L. H., Elahi, H., Khan, A. A., Shad, S., 10.1007/s00542-018-4021-0, Microsyst. Technol. 25 (2019), 747-763. (2019) DOI10.1007/s00542-018-4021-0
- Vala, J., Structure identification of metal fibre reinforced cementitious composites, Algoritmy: 20th Conference on Scientific Computing STU Bratislava, Bratislava (2016), 244-253. (2016)
- Vala, J., Kozák, V., 10.1016/j.tafmec.2020.102486, Theor. Appl. Fract. Mech. 107 (2020), Article ID 102486, 8 pages. (2020) DOI10.1016/j.tafmec.2020.102486
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.