Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation
Angela Handlovičová; Karol Mikula
Applications of Mathematics (2008)
- Volume: 53, Issue: 2, page 105-129
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHandlovičová, Angela, and Mikula, Karol. "Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation." Applications of Mathematics 53.2 (2008): 105-129. <http://eudml.org/doc/33313>.
@article{Handlovičová2008,
abstract = {We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.},
author = {Handlovičová, Angela, Mikula, Karol},
journal = {Applications of Mathematics},
keywords = {mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method; unconditional stability; consistency; mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method},
language = {eng},
number = {2},
pages = {105-129},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation},
url = {http://eudml.org/doc/33313},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Handlovičová, Angela
AU - Mikula, Karol
TI - Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 105
EP - 129
AB - We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.
LA - eng
KW - mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method; unconditional stability; consistency; mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method
UR - http://eudml.org/doc/33313
ER -
References
top- Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal. 123 (1993), 200–257. (1993)
- 10.1007/BF01041068, Arch. Ration. Mech. Anal. 108 (1989), 323–391. (1989) DOI10.1007/BF01041068
- Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4 (1991), 271–283. (1991)
- Simulations of anisotropic motion by mean curvature—comparison of phase field and sharp interface approaches, Acta Math. Univ. Comen. 67 (1998), 17–42. (1998)
- 10.1016/S0097-8493(97)00085-X, Computers and Graphics 22 (1998), 83–90. (1998) DOI10.1016/S0097-8493(97)00085-X
- 10.1023/A:1007979827043, International Journal of Computer Vision 22 (1997), 61–79. (1997) DOI10.1023/A:1007979827043
- 10.4310/jdg/1214446564, J. Differ. Geom. 33 (1991), 749–786. (1991) MR1100211DOI10.4310/jdg/1214446564
- 10.1137/060651203, SIAM J. Sci. Comput. 28 (2006), 2248–2265. (2006) MR2272260DOI10.1137/060651203
- 10.1090/S0273-0979-1992-00266-5, Bull. Am. Math. Soc. (NS) 27 (1992), 1–67. (1992) MR1118699DOI10.1090/S0273-0979-1992-00266-5
- Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound. 2 (2000), 341–359. (2000) MR1789171
- Numerical approximations of mean curvature flow of graphs and level sets, In: Mathematical Aspects of Evolving Interfaces, L. Ambrosio, K. Deckelnick, G. Dziuk, M. Mimura, V. A. Solonnikov, H. M. Soner (eds.), Springer, Berlin-Heidelberg-New York, 2003, pp. 53–87. (2003) MR2011033
- An algorithm for evolutionary surfaces, Numer. Math. 58 (1991), 603–611. (1991) Zbl0714.65092MR1083523
- 10.1142/S0218202594000339, Math. Models Methods Appl. Sci. 4 (1994), 589–606. (1994) Zbl0811.65112MR1291140DOI10.1142/S0218202594000339
- 10.4310/jdg/1214446559, J. Differ. Geom. 33 (1991), 635–681. (1991) MR1100206DOI10.4310/jdg/1214446559
- 10.1007/s007910050016, Comput. Vis. Sci. 1 (1998), 179–182. (1998) DOI10.1007/s007910050016
- 10.1007/s002110100374, Numer. Math. 93 (2003), 675–695. (2003) MR1961884DOI10.1007/s002110100374
- 10.1006/jvci.2001.0479, J. Visual Communication and Image Representation 13 (2002), 217–237. (2002) DOI10.1006/jvci.2001.0479
- 10.1016/0168-9274(95)00008-I, Appl. Numer. Math. 17 (1995), 47–59. (1995) MR1335517DOI10.1016/0168-9274(95)00008-I
- 10.1007/BF00379537, Arch. Ration. Mech. Anal. 134 (1996), 275–301. (1996) MR1412430DOI10.1007/BF00379537
- Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. (2002) MR1925043
- 10.1137/S1064827594261905, SIAM J. Sci. Comput. 17 (1996), 1302–1327. (1996) MR1413703DOI10.1137/S1064827594261905
- 10.1007/PL00005479, Numer. Math. 89 (2001), 561–590. (2001) MR1864431DOI10.1007/PL00005479
- 10.1007/s00791-006-0014-0, Comput. Vis. Sci. 9 (2006), 23–31. (2006) MR2214835DOI10.1007/s00791-006-0014-0
- Semi-implicit co-volume level set method in medical image segmentation, In: Handbook of Biomedical Image Analysis: Segmentation and Registration Models, J. Suri et al. (eds.), Springer, New York, 2005, pp. 583–626. (2005)
- 10.1137/S0036139999359288, SIAM J. Appl. Math. 61 (2001), 1473–1501. (2001) MR1824511DOI10.1137/S0036139999359288
- 10.1007/s00791-004-0131-6, Computing and Visualization in Science 6 (2004), 211–225. (2004) MR2071441DOI10.1007/s00791-004-0131-6
- 10.1142/S0218202593000369, Math. Models Methods Appl. Sci. 3 (1993), 711–723. (1993) MR1245632DOI10.1142/S0218202593000369
- 10.1007/s00211-004-0566-1, Numer. Math. 99 (2004), 365–379. (2004) Zbl1070.65082MR2107436DOI10.1007/s00211-004-0566-1
- Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, 2003. (2003) MR1939127
- Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), 12–49. (1988) MR0965860
- Subjective surfaces: A method for completing missing boundaries, Proc. Natl. Acad. Sci. USA 12 (2000), 6258–6263. (2000) MR1760935
- Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge University Press, New York, 1999. (1999) MR1700751
- 10.1137/S0036142994262068, SIAM J. Numer. Anal. 33 (1996), 2215–2238. (1996) Zbl0863.65061MR1427460DOI10.1137/S0036142994262068
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.