Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová; Karol Mikula

Applications of Mathematics (2008)

  • Volume: 53, Issue: 2, page 105-129
  • ISSN: 0862-7940

Abstract

top
We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

How to cite

top

Handlovičová, Angela, and Mikula, Karol. "Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation." Applications of Mathematics 53.2 (2008): 105-129. <http://eudml.org/doc/33313>.

@article{Handlovičová2008,
abstract = {We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.},
author = {Handlovičová, Angela, Mikula, Karol},
journal = {Applications of Mathematics},
keywords = {mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method; unconditional stability; consistency; mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method},
language = {eng},
number = {2},
pages = {105-129},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation},
url = {http://eudml.org/doc/33313},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Handlovičová, Angela
AU - Mikula, Karol
TI - Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 105
EP - 129
AB - We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.
LA - eng
KW - mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method; unconditional stability; consistency; mean curvature flow; level set equation; numerical solution; semi-implicit scheme; complementary volume method
UR - http://eudml.org/doc/33313
ER -

References

top
  1. Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal. 123 (1993), 200–257. (1993) 
  2. 10.1007/BF01041068, Arch. Ration. Mech. Anal. 108 (1989), 323–391. (1989) DOI10.1007/BF01041068
  3. Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal. 4 (1991), 271–283. (1991) 
  4. Simulations of anisotropic motion by mean curvature—comparison of phase field and sharp interface approaches, Acta Math. Univ. Comen. 67 (1998), 17–42. (1998) 
  5. 10.1016/S0097-8493(97)00085-X, Computers and Graphics 22 (1998), 83–90. (1998) DOI10.1016/S0097-8493(97)00085-X
  6. 10.1023/A:1007979827043, International Journal of Computer Vision 22 (1997), 61–79. (1997) DOI10.1023/A:1007979827043
  7. 10.4310/jdg/1214446564, J.  Differ. Geom. 33 (1991), 749–786. (1991) MR1100211DOI10.4310/jdg/1214446564
  8. 10.1137/060651203, SIAM J.  Sci. Comput. 28 (2006), 2248–2265. (2006) MR2272260DOI10.1137/060651203
  9. 10.1090/S0273-0979-1992-00266-5, Bull. Am. Math. Soc. (NS) 27 (1992), 1–67. (1992) MR1118699DOI10.1090/S0273-0979-1992-00266-5
  10. Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs, Interfaces Free Bound. 2 (2000), 341–359. (2000) MR1789171
  11. Numerical approximations of mean curvature flow of graphs and level sets, In: Mathematical Aspects of Evolving Interfaces, L.  Ambrosio, K.  Deckelnick, G.  Dziuk, M.  Mimura, V. A.  Solonnikov, H. M.  Soner (eds.), Springer, Berlin-Heidelberg-New York, 2003, pp. 53–87. (2003) MR2011033
  12. An algorithm for evolutionary surfaces, Numer. Math. 58 (1991), 603–611. (1991) Zbl0714.65092MR1083523
  13. 10.1142/S0218202594000339, Math. Models Methods Appl. Sci. 4 (1994), 589–606. (1994) Zbl0811.65112MR1291140DOI10.1142/S0218202594000339
  14. 10.4310/jdg/1214446559, J.  Differ. Geom. 33 (1991), 635–681. (1991) MR1100206DOI10.4310/jdg/1214446559
  15. 10.1007/s007910050016, Comput. Vis. Sci. 1 (1998), 179–182. (1998) DOI10.1007/s007910050016
  16. 10.1007/s002110100374, Numer. Math. 93 (2003), 675–695. (2003) MR1961884DOI10.1007/s002110100374
  17. 10.1006/jvci.2001.0479, J.  Visual Communication and Image Representation 13 (2002), 217–237. (2002) DOI10.1006/jvci.2001.0479
  18. 10.1016/0168-9274(95)00008-I, Appl. Numer. Math. 17 (1995), 47–59. (1995) MR1335517DOI10.1016/0168-9274(95)00008-I
  19. 10.1007/BF00379537, Arch. Ration. Mech. Anal. 134 (1996), 275–301. (1996) MR1412430DOI10.1007/BF00379537
  20. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. (2002) MR1925043
  21. 10.1137/S1064827594261905, SIAM J. Sci. Comput. 17 (1996), 1302–1327. (1996) MR1413703DOI10.1137/S1064827594261905
  22. 10.1007/PL00005479, Numer. Math. 89 (2001), 561–590. (2001) MR1864431DOI10.1007/PL00005479
  23. 10.1007/s00791-006-0014-0, Comput. Vis. Sci. 9 (2006), 23–31. (2006) MR2214835DOI10.1007/s00791-006-0014-0
  24. Semi-implicit co-volume level set method in medical image segmentation, In: Handbook of Biomedical Image Analysis: Segmentation and Registration Models, J. Suri et al. (eds.), Springer, New York, 2005, pp. 583–626. (2005) 
  25. 10.1137/S0036139999359288, SIAM J.  Appl. Math. 61 (2001), 1473–1501. (2001) MR1824511DOI10.1137/S0036139999359288
  26. 10.1007/s00791-004-0131-6, Computing and Visualization in Science 6 (2004), 211–225. (2004) MR2071441DOI10.1007/s00791-004-0131-6
  27. 10.1142/S0218202593000369, Math. Models Methods Appl. Sci. 3 (1993), 711–723. (1993) MR1245632DOI10.1142/S0218202593000369
  28. 10.1007/s00211-004-0566-1, Numer. Math. 99 (2004), 365–379. (2004) Zbl1070.65082MR2107436DOI10.1007/s00211-004-0566-1
  29. Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, 2003. (2003) MR1939127
  30. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), 12–49. (1988) MR0965860
  31. Subjective surfaces: A method for completing missing boundaries, Proc. Natl. Acad. Sci. USA 12 (2000), 6258–6263. (2000) MR1760935
  32. Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science, Cambridge University Press, New York, 1999. (1999) MR1700751
  33. 10.1137/S0036142994262068, SIAM J.  Numer. Anal. 33 (1996), 2215–2238. (1996) Zbl0863.65061MR1427460DOI10.1137/S0036142994262068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.