A saddle point approach to nonlinear eigenvalue problems
Mathematica Slovaca (1997)
- Volume: 47, Issue: 4, page 463-477
- ISSN: 0139-9918
Access Full Article
topHow to cite
topMotreanu, Dumitru. "A saddle point approach to nonlinear eigenvalue problems." Mathematica Slovaca 47.4 (1997): 463-477. <http://eudml.org/doc/34462>.
@article{Motreanu1997,
author = {Motreanu, Dumitru},
journal = {Mathematica Slovaca},
keywords = {eigenvalue problem; critical point; semilinear elliptic equations},
language = {eng},
number = {4},
pages = {463-477},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {A saddle point approach to nonlinear eigenvalue problems},
url = {http://eudml.org/doc/34462},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Motreanu, Dumitru
TI - A saddle point approach to nonlinear eigenvalue problems
JO - Mathematica Slovaca
PY - 1997
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 47
IS - 4
SP - 463
EP - 477
LA - eng
KW - eigenvalue problem; critical point; semilinear elliptic equations
UR - http://eudml.org/doc/34462
ER -
References
top- AMBROSETTI A.-RABINOWITZ P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 369-381. (1973) Zbl0273.49063MR0370183
- CHANG K. C., Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. (1981) Zbl0487.49027MR0614246
- DEGIOVANNI M., Bifurcation for odd nonlinear variational inequalities, Ann. Fac. Sci. Toulouse Math. (6) 11 (1990), 39-66. (1990) MR1191471
- DU Y., A deformation lemma and some critical point theorems, Bull. Austral. Math. Soc. 43 (1991), 161-168. (1991) Zbl0714.58008MR1086730
- GHOUSSOUB N., A min-max principle with a relaxed boundary condition, Proc. Amer. Math. Soc. 117 (1993), 439-447. (1993) Zbl0791.49028MR1089405
- GHOUSSOUB N.-PREISS D., A general mountain pass principle for locating and classifying critical points, Ann. Inst. H. Poincare. Anal. Non Lineaire 6 (1989), 321-330. (1989) Zbl0711.58008MR1030853
- HOFER H., A note on the topological degree at a critical point of mountainpath-type, Proc. Amer. Math. Soc. 90 (1984), 309-315. (1984) MR0727256
- HULSHOF J.-van der VORST R., Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), 97-105. (1993) Zbl0793.35038MR1220982
- KAVIAN O., Introduction á la theorie des points critiques et applications aux problémes elliptiques, Mathématiques & Applications 13, Springer Verlag, Paris, 1993. (1993) Zbl0797.58005MR1276944
- KUBRULSKI R. S., Variational methods for nonlinear eigenvalue problems, Differential Integral Equations 3 (1990), 923-932. (1990)
- LEFTER C.-MOTREANU D., Critical point theory in nonlinear eigenvalue problems with discontinuities, In.: Internat. Ser. Numer. Math. 107, Birkhäuser Verlag, Basel, 1992, pp. 25-36. (1992) MR1223355
- MOTREANU D., Existence for minimization with nonconvex constraints, J. Math. Anal. Appl. 117 (1986), 128-137. (1986) Zbl0599.49008MR0843009
- MOTREANU D.-PANAGIOTOPOULOS P. D., Hysteresis: the eigenvalue problem for hemivariational inequalities, In: Models of Hysteresis, Longman Scient. PubL, Harlow, 1993, pp. 102-117. (1993) Zbl0801.49027MR1235118
- PALAIS R. S., Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. (1966) Zbl0143.35203MR0259955
- PALAIS R. S.-TERNG C. L., Critical Point Theory and Submanifold Geometry, Lecture Notes in Math. 1353, Springer Verlag, Berlin, 1988. (1988) Zbl0658.49001MR0972503
- RABINOWITZ P. H., Variational methods for nonlinear eigenvalue problems, In: Eigenvalues of Nonlinear Problems (G. Prodi, ed.), C.I.M.E., Edizioni Cremonese, Roma, 1975, pp. 141-195. (1975) MR0464299
- RABINOWITZ P. H., Minimax Methods in Critical Point Theory With Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer.Math.Soc, Providence, R.I., 1986. (1986) Zbl0609.58002MR0845785
- RAUCH J., Discontinuous semilinear differential equations and multiple valued maps, Proc. Amer. Math. Soc. 64 (1977), 277-282. (1977) Zbl0413.35031MR0442453
- SCHECHTER M.-TINTAREV K., Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems, Differential Integral Equations 3 (1990), 889-899. (1990) Zbl0727.35105MR1059337
- SCHECHTER M.-TINTAREV K., Points of spherical maxima and solvability of semilinear elliptic equations, Canad. J. Math. 43 (1991), 825-831. (1991) Zbl0755.35083MR1127032
- SZULKIN A., Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Lineaire 3 (1986), 77-109. (1986) Zbl0612.58011MR0837231
- SZULKIN A., Ljusternik-Schnirelman theory on -manifold, Ann. Inst. H. Poincaré Anal Non Linéaire 5 (1988), 119-139. (1988) MR0954468
- WANG T., Ljusternik-Schnirelman category theory on closed subsets of Banach manifolds, J. Math. Anal. Appl. 149 (1990), 412-423. (1990) MR1057683
- ZEIDLER E., Ljusternik-Schnirelman theory on general level sets, Math. Nachr. 129 (1986), 235-259. (1986) Zbl0608.58014MR0864637
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.