Bifurcation for odd nonlinear elliptic variational inequalities

Marco Degiovanni

Annales de la Faculté des sciences de Toulouse : Mathématiques (1990)

  • Volume: 11, Issue: 1, page 39-66
  • ISSN: 0240-2963

How to cite

top

Degiovanni, Marco. "Bifurcation for odd nonlinear elliptic variational inequalities." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (1990): 39-66. <http://eudml.org/doc/73251>.

@article{Degiovanni1990,
author = {Degiovanni, Marco},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {variational bifurcation; multiplicity theorem; von Kármán’s equations},
language = {eng},
number = {1},
pages = {39-66},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Bifurcation for odd nonlinear elliptic variational inequalities},
url = {http://eudml.org/doc/73251},
volume = {11},
year = {1990},
}

TY - JOUR
AU - Degiovanni, Marco
TI - Bifurcation for odd nonlinear elliptic variational inequalities
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1990
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 39
EP - 66
LA - eng
KW - variational bifurcation; multiplicity theorem; von Kármán’s equations
UR - http://eudml.org/doc/73251
ER -

References

top
  1. [1] Attouch ( H.) .— Variational convergence for functions and operators, Applicable Math. Series, Pitman (Advanced Publishing Program), Boston, Mass.London, (1984) Zbl0561.49012MR773850
  2. [2] Benci ( V.) .— Positive solutions of some eigenvalue problems in the theory of variational inequatilities, J. Math. Anal. Appl.61 (1977) pp. 165-187 Zbl0432.35059MR460868
  3. [3] Benci ( V.) and Micheletti ( A.M.) .— Su un problema di autovalori per disequazioni variazionali, Ann. Mat. Pura Appl. (4) 107 (1975) pp. 359-371 Zbl0324.49004MR412941
  4. [4] Berger ( M.S.) .— On von Kármán's equations and the buckling of a thin elastic plate. I the clamped plate, Comm. Pure Appl. Math.20 (1967) pp. 687-719 Zbl0162.56405MR221808
  5. [5] Berger ( M.S.) and Fife ( P.C.) .— Von Kármán's equations and the buckling of a thin elastic plate, II plate with general edge conditions, Comm. Pure Appl. Math.21 (1968) pp. 227-241 Zbl0162.56501MR229978
  6. [6] Böhme ( R.) . — Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z.127 (1972) pp. 105-126 Zbl0254.47082MR312348
  7. [7] Čobanov ( G.), Marino ( A.) and Scolozzi ( D.) .— Evolution equation for the eigenvalue problem for the Laplace operator with respect to an obstacle, preprint, Dip. Mat. Pisa214, Pisa (1987) 
  8. [8] Čobanov ( G.), Marino ( A.) and Scolozzi ( D.) .— Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle and non tangency conditons, Nonlinear Anal., in press Zbl0716.49009MR1065252
  9. [9] De Giorgi ( E.), Degiovanni ( M.), Marino ( A.), Tosques ( M.) .— Evolution equations for a class of non-linear opertors, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983), pp. 1-8 (1984) Zbl0597.47045MR780801
  10. [10] De Giorgi ( E.) and Franzoni ( T.) .— Su un tipo di convergenza variazionale, Rend. Sem. Mat. Brescia3 (1979) pp. 63-101 
  11. [11] Degiovanni ( M.) .— Homotopical properties of a class of nonsmooth functions, Ann. Mat. Pura Appl., in press Zbl0722.58013MR1080210
  12. [12] Degiovanni ( M.) .— Bifurcation problems for nonlinear elliptic variational inequalities, Ann. Fac. Sci. Toulouse, in press Zbl0656.58030MR1425487
  13. [13] Degiovanni ( M.) .— On the buckling of a thin elastic plate subjected to unilateral constraints, Nonlinear Variational Problems II (Isola d'Elba (1986)), pp. 161-180, Pitman Res. Notes in Math., 193, Longman, Harlow1989 Zbl0684.73022MR993805
  14. [14] Degiovanni ( M.) and Marino ( A.) .— Alcuni problemi di autovalori e di biforcazione rispetto ad un ostacolo, Equazioni Differenziali e Calcolo delle Variazioni, Pisa (1985) pp. 71-93, Editrice Tecnico Scientifica, Pisa (1985) 
  15. [15] Degiovanni ( M.) and Marino ( A.) .— Nonsmooth variational bifurcation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987) pp. 259-269 (1988) Zbl0671.58029MR999818
  16. [16] Degiovanni ( M.), Marino ( A.) and Tosques ( M.) .— Evolution equations with lack of convexity, Nonlinear Anal.9 (1985) pp. 1401-1443 Zbl0545.46029MR820649
  17. [17] Do ( C.) .— Bifurcation theory for elastic plates subjected to unilateral conditions, J. Math. Anal. Appl.60 (1977) pp. 435-448 Zbl0364.73030MR455672
  18. [18] Do ( C.) .— Nonlinear bifurcation problem and buckling of an elastic plate subjected to unilateral conditions in its plane, Contemporary Developments in Continuun Mechanics and Partial Differential Equations. (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, (1977)) pp. 112-134, North-Holland Math. Studies, 30, North-Holland, Amsterdam, 1978 Zbl0401.73060MR519641
  19. [19] Fadell ( E.) .— Lectures in cohomological index theories of G-spaces with applications to critical point theory, Raccolta di Seminari del Dipartimento di Matematica dell'Università degli Studi della Calabria, 6, Cosenza (1985) 
  20. [20] Fadell ( E.) and Husseini ( S.) .— Relative cohomological index theories, Adv. in Math.64 (1987) pp. 1-31 Zbl0619.58012MR879854
  21. [21] Fadell ( E.R.) and Rabinowitz ( P.H.) .— Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal.26 (1977) pp. 48-67 Zbl0363.47029MR448409
  22. [22] Fadell ( E.R.) and Rabinowitz ( P.H.) .— Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math.45 (1978) pp. 139-174 Zbl0403.57001MR478189
  23. [23] Krasnoselskii ( M.A.) .— Topological methods in the theory of nonlinear integral equations, Gosudarstv. Izdat. Tehn. -Teor. Lit. Moscow (1956)The Macmillan Co., New-York (1964) MR96983
  24. [24] Kučera ( M.) .— A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues, Czechoslovak Math. J.32 (1982) pp. 197-207 Zbl0621.49005MR654056
  25. [25] Kučera ( M.) .— Bifurcation points of variational inequalities, Czechoslovak Math. J.32 (1982) pp. 208-226 Zbl0621.49006MR654057
  26. [26] Kučera ( M.) .— A global continuation theorem for obtaining eigenvalues and bifurcation points, Czechoslovak Math. J.38 (1988) pp. 120-137 Zbl0665.35010MR925946
  27. [27] Kučera ( M.), Nečas ( J.) and Souček ( J.) .— The eigenvalue problem for variational inequalities and a new version of the Ljusternik-Schnirelmann theory, Nonlinear Analysis (Collection of papers in honor of Erich H. Rothe), Academic Press, New-York (1978) pp. 125-143 Zbl0463.47041MR513782
  28. [28] Marino ( A.) .— La biforcazione nel caso variazionale, Confer. Sem. Mat. Univ. Bari N.132 (1973) Zbl0323.47046MR348570
  29. [29] Mcleod ( J.B.) and Turner ( R.E.L.) .— Bifurcation for non-differentiable operators with an application to elasticity, Arch. Rational Mech. Anal.63 (1976) pp. 1-45 Zbl0356.47030MR473953
  30. [30] Miersemann ( E.) .— Eigenwertaufgaben für Variationsungleichungen, Math. Nachr.100 (1981) pp. 221-228 Zbl0474.49011MR632628
  31. [31] Miersemann ( E.) . — On higher eigenvalues of variational inequalities, Comment. Math. Univ. Carolin.24 (1983) pp. 657-665 Zbl0638.49020MR738561
  32. [32] Miersemann ( E.) .— Eigenvalue problems in convex sets, Mathematical Control Theory, Banach Center Publ.14PWN, Warsaw (1985) pp. 401-408 MR851239
  33. [33] Quittner ( P.) .— Spectral analysis of variational inequalities, Comment. Math. Univ. Carolin.27 (1986) pp. 605-629 Zbl0652.49008MR873631
  34. [34] Quittner ( P.) .— Bifurcation points and eigenvalues of inequalities of reaction-diffusion type, J. Reine Angew. Math.380 (1987) pp. 1-13 Zbl0617.35053MR916198
  35. [35] Quittner ( P.) . — Solvability and multiplicity results for variational inequalities, preprint (1987) MR1014128
  36. [36] Rabinowitz ( P.H.) .— A bifurcation theorem for potential operators, J. Funct. Anal.25 (1977) pp. 412-424 Zbl0369.47038MR463990
  37. [37] Rabinowitz ( P.H.) .— Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics65American Mathematical Society, Providence, R.I. (1986) Zbl0609.58002MR845785
  38. [38] Riddell ( R.C.) . — Eigenvalue problems for nonlinear elliptic variational inequali ties on a cone, J. Funct. Anal.26 (1977) pp. 333-355 Zbl0369.47039MR460882
  39. [39] Riddell ( R.C.) — Eigenvalue problems for nonlinear elliptic variational inequalities, Nonlinear Anal.3 (1979) pp. 1-33 Zbl0416.49009MR520467
  40. [40] Spanier ( E.H.) .— Algebraic topology, McGraw - Hill Book Co., New-York - Toronto, Ont.London (1966) Zbl0145.43303MR210112
  41. [41] Szulkin ( A.) .— On a class of variational inequalities involving gradient operators, J. Math. Anal. Appl.100 (1984) pp. 486-499 Zbl0551.49008MR743337
  42. [42] Szulkin ( A.) . — On the solvability of a class ofsemilinear variational inequalities, Rend. Mat. (7) 4 (1984) pp. 121-137 Zbl0608.35003MR807126
  43. [43] Szulkin ( A.) .— Positive solutions of variational inequalities : a degree-theoretic approach, J. Differential Equations57 (1985) pp. 90-111 Zbl0535.35029MR788424

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.