Séries de q -factorielles, opérateurs aux q -différences et confluence

Anne Duval

Annales de la Faculté des sciences de Toulouse : Mathématiques (2003)

  • Volume: 12, Issue: 3, page 335-374
  • ISSN: 0240-2963

How to cite

top

Duval, Anne. "Séries de $q$-factorielles, opérateurs aux $q$-différences et confluence." Annales de la Faculté des sciences de Toulouse : Mathématiques 12.3 (2003): 335-374. <http://eudml.org/doc/73607>.

@article{Duval2003,
author = {Duval, Anne},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
language = {fre},
number = {3},
pages = {335-374},
publisher = {Université Paul Sabatier, Institut de Mathématiques},
title = {Séries de $q$-factorielles, opérateurs aux $q$-différences et confluence},
url = {http://eudml.org/doc/73607},
volume = {12},
year = {2003},
}

TY - JOUR
AU - Duval, Anne
TI - Séries de $q$-factorielles, opérateurs aux $q$-différences et confluence
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2003
PB - Université Paul Sabatier, Institut de Mathématiques
VL - 12
IS - 3
SP - 335
EP - 374
LA - fre
UR - http://eudml.org/doc/73607
ER -

References

top
  1. [1] Adams ( C.R. ), Linear q-difference Equations, Bull. AMS (1931), 361-400. Zbl0002.19103JFM57.0534.05
  2. [2] Gasper ( G. ), Elementary Derivations of Summation and Transformation Formulas for q-Series, Fields Inst. Comm.14, p. 55-70 (1997). Zbl0873.33013MR1448679
  3. [3] Gérard ( R. ), Lutz ( D.A.), Convergent factorial series solutions of singular operator equations, Analysis10, 99-145 (1990). Zbl0712.39016MR1074828
  4. [4] Harris ( W.A.) Jr., Analytic theory of difference equations in Analytic theory of differential equations, Lecture Notes in Mathematics, 183, Springer, Berlin197146-58. Zbl0232.39001MR390565
  5. [5] Jackson ( F.H. ), q-difference Equations, Am. J. Math.32, p. 305-315 (1910). MR1506108JFM41.0502.01
  6. [6] Nörlund ( N.-E. ), Leçons sur les séries d'interpolation , Gauthier-Villars, Paris1926. JFM52.0301.04
  7. [7] Postnikov ( M. ), Leçons de géométrie, Groupes et algèbres de Lie, Editions MIR1985. MR831660
  8. [8] Ramis ( J.-P. ), About the growth of entire functions solutions of linear algebraic q-difference equations, Ann. Fac. Sciences de Toulouse, Série 6, 1, p. 53-94 (1992) Zbl0796.39005MR1191729
  9. [9] Sauloy ( J. ), Systèmes aux q-différences singuliers réguliers : classification, matrice de connexion et monodromie, Ann. Inst. Fourier50, p. 1021-1071 (2000 ). Zbl0957.05012MR1799737

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.