Fonctions différentiables invariantes sous l'opération d'un groupe réductif
Annales de l'institut Fourier (1976)
- Volume: 26, Issue: 1, page 33-49
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topLuna, Domingo. "Fonctions différentiables invariantes sous l'opération d'un groupe réductif." Annales de l'institut Fourier 26.1 (1976): 33-49. <http://eudml.org/doc/74270>.
@article{Luna1976,
abstract = {Soit $\Gamma $ un groupe, soit $\Gamma \rightarrow \{\rm GL\}(n,\{\bf R\})$ une représentation complètement réductible de $\Gamma $, et soit $p_1,\ldots ,p_m$ un système de générateurs de l’algèbre des fonctions polynômes sur $\{\bf R\}^n$, invariantes par $\Gamma $. Dans l’article on démontre que toute fonction analytique sur $\{\bf R\}^n$, invariante par $\Gamma $, peut s’écrire comme fonction analytique en $p_1,\ldots ,p_m$ ; on obtient également un résultat analogue pour les fonctions indéfiniment différentiables.},
author = {Luna, Domingo},
journal = {Annales de l'institut Fourier},
language = {fre},
number = {1},
pages = {33-49},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fonctions différentiables invariantes sous l'opération d'un groupe réductif},
url = {http://eudml.org/doc/74270},
volume = {26},
year = {1976},
}
TY - JOUR
AU - Luna, Domingo
TI - Fonctions différentiables invariantes sous l'opération d'un groupe réductif
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 1
SP - 33
EP - 49
AB - Soit $\Gamma $ un groupe, soit $\Gamma \rightarrow {\rm GL}(n,{\bf R})$ une représentation complètement réductible de $\Gamma $, et soit $p_1,\ldots ,p_m$ un système de générateurs de l’algèbre des fonctions polynômes sur ${\bf R}^n$, invariantes par $\Gamma $. Dans l’article on démontre que toute fonction analytique sur ${\bf R}^n$, invariante par $\Gamma $, peut s’écrire comme fonction analytique en $p_1,\ldots ,p_m$ ; on obtient également un résultat analogue pour les fonctions indéfiniment différentiables.
LA - fre
UR - http://eudml.org/doc/74270
ER -
References
top- [1] H. GRAUERT, On Levi's Problem and the Imbedding of Real-Analytic Manifolds, Ann. of Math., 68 (1958), 460-472. Zbl0108.07804MR20 #5299
- [2] R.C. GUNNING, H. ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, (1965). Zbl0141.08601MR31 #4927
- [3] D. LUNA, Slices étales, Bull. Soc. Math. de France, Mémoire 33 (1973), 81-105. Zbl0286.14014MR49 #7269
- [4] D. LUNA, Sur certaines opérations différentiables des groupes de Lie, Amer. J. Math., 97 (1975), 172-181. Zbl0334.57022MR51 #527
- [5] G.W. SCHWARZ, Smooth Functions Invariant Under the Action of a Compact Lie Group, Topology, 14 (1975), 63-68. Zbl0297.57015MR51 #6870
Citations in EuDML Documents
top- Václav Studený, Natural vector fields on tangent bundles
- G. Barbançon, M. Raïs, Sur le théorème de Hilbert différentiable pour les groupes linéaires finis (d'après E. Noether)
- Jean-Claude Tougeron, Fonctions composées différentiables : cas algébrique
- Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces
- Daniel Greb, Christian Miebach, Invariant meromorphic functions on Stein spaces
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.