Whitney regularity and generic wings
V. Navarro Aznar; David J. A. Trotman
Annales de l'institut Fourier (1981)
- Volume: 31, Issue: 2, page 87-111
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAznar, V. Navarro, and Trotman, David J. A.. "Whitney regularity and generic wings." Annales de l'institut Fourier 31.2 (1981): 87-111. <http://eudml.org/doc/74499>.
@article{Aznar1981,
abstract = {Given adjacent subanalytic strata $(X,Y)$ in $\{\bf R\}^n$ verifying Kuo’s ratio test $(r)$ (resp. Verdier’s $(w)$-regularity) we find an open dense subset of the codimension $k$$C^1$ submanifolds $W$ (wings) containing $Y$ such that $(X\cap W,Y)$ is generically Whitney $(b^\pi )$-regular is exactly one more than the dimension of the set of limits of vectors for which $(b^\pi )$ fails. A general position argument for smooth strata is also given.},
author = {Aznar, V. Navarro, Trotman, David J. A.},
journal = {Annales de l'institut Fourier},
keywords = {adjacent subanalytic strata; test; Verdier's (w)-regularity; Whitney -regular; stratification},
language = {eng},
number = {2},
pages = {87-111},
publisher = {Association des Annales de l'Institut Fourier},
title = {Whitney regularity and generic wings},
url = {http://eudml.org/doc/74499},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Aznar, V. Navarro
AU - Trotman, David J. A.
TI - Whitney regularity and generic wings
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 2
SP - 87
EP - 111
AB - Given adjacent subanalytic strata $(X,Y)$ in ${\bf R}^n$ verifying Kuo’s ratio test $(r)$ (resp. Verdier’s $(w)$-regularity) we find an open dense subset of the codimension $k$$C^1$ submanifolds $W$ (wings) containing $Y$ such that $(X\cap W,Y)$ is generically Whitney $(b^\pi )$-regular is exactly one more than the dimension of the set of limits of vectors for which $(b^\pi )$ fails. A general position argument for smooth strata is also given.
LA - eng
KW - adjacent subanalytic strata; test; Verdier's (w)-regularity; Whitney -regular; stratification
UR - http://eudml.org/doc/74499
ER -
References
top- [1] J. BRIANÇON et J.-P. SPEDER, La trivialité topologique n'implique pas les conditions de Whitney, C.R. Acad. Sci, Paris, t. 280, (1975), 365-367. Zbl0331.32010MR54 #13122
- [2] J. BRIANÇON et J.-P. SPEDER, Les conditions de Whitney impliquent µ*-constant, Annales de l'Institut Fourier, Grenoble, 26(2) (1976), 153-163. Zbl0331.32012MR54 #7843
- [3] J. BRIANÇON et J.-P. SPEDER, Equisingularité et conditions de Whitney, Thèses, Université de Nice, 1976.
- [4] H. BRODERSEN and D. J. A. TROTMAN, Whitney (b)-regularity is strictly weaker than Kuo's ratio test for real algebraic stratifications, Mathematica Scandinavia, 45, (1979), 27-34. Zbl0429.58001MR81i:58008
- [5] H. HIRONAKA, Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, volume in honour of Y. Akizuki, Kinokuniya, Tokyo (1973), 453-493. Zbl0297.32008MR51 #13275
- [6] T.-C. KUO, The ratio test for analytic Whitney stratifications, Liverpool Singularities Symposium I. (ed. C.T.C. Wall), Springer Lecture Notes, Berlin, 192 (1971), 141-149. Zbl0246.32006MR43 #5056
- [7] LE D¨NG TRÀNG et K. SAITO, La constance du nombre de Milnor donne des bonnes stratifications. C.R. Acad. Sci., Paris, t. 277 (1973), 793-795. Zbl0283.32007MR50 #2556
- [8] V. NAVARRO AZNAR, Conditions de Whitney et sections planes, Inventiones Math., 61 (1980), 199-225. Zbl0449.32013MR82h:32019
- [9] B. TEISSIER, Cycles évanescents, sections planes et conditions de Whitney, Singularités de Cargèse, Astérisque (Société Mathématique de France), 7-8 (1973), 285-362. Zbl0295.14003MR51 #10682
- [10] B. TEISSIER, Introduction to equisingularity problems, A.M.S. Algebraic Geometry Symposium, Arcata, 1974, Providence, Rhode Island (1975), 593-632. Zbl0322.14008MR54 #10247
- [11] B. TEISSIER, Variétés polaires locales et conditions de Whitney, C.R. Acad. Sci., Paris, t. 290 (1980), 799-802. Zbl0496.32009MR82m:32006
- [12] R. THOM, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. (1969), 240-284. Zbl0197.20502MR39 #970
- [13] D.J.A. TROTMAN, Counterexamples in stratification theory : two discordant horns, Real and Complex Singularities, Oslo, 1976 (éd. P. Holm), Sijthoff et Noordhoff (1977), 679-686. Zbl0378.57012MR57 #1510
- [14] D.J.A. TROTMAN, Whitney stratifications : faults and detectors, Thesis, University of Warwick, 1977.
- [15] D.J.A. TROTMAN, Interprétations topologiques des conditions de Whitney, Journées Singulières de Dijon, juin 1978, Astérisque, 59-60 (1979), 233-248. Zbl0416.58004MR81f:58005
- [16] J.-L. VERDIER, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math., 36 (1976), 295-312. Zbl0333.32010MR58 #1242
- [17] C.T.C. WALL, Regular stratifications, Dynamical Systems, Warwick, 1974, Springer Lecture Notes, 468 (1975), 332-344. Zbl0439.58008MR58 #31184
- [18] H. WHITNEY, Local properties of analytic varieties, Diff. and Comb. Topology (ed. S. Cairns), Princeton (1965), 205-244. Zbl0129.39402MR32 #5924
- [19] H. WHITNEY, Tangents to an analytic variety. Annals of Math., 81 (1965), 496-549. Zbl0152.27701MR33 #745
- [20] B. TEISSIER, The hunting of invariants in the geometry of discriminants, in Real and Complex Singularities, Oslo, 1976 (ed. P. Holm), Sijthoff et Noordhoof, Alphen aan den Rijn, 1977. Zbl0388.32010
- [21] J.-P. HENRY et M. MERLE, Sections planes, limites d'espaces tangents et transversalité de variétés polaires, C.R. Acad. Sci., Paris, t. 291 (1980), 291-294. Zbl0472.32005MR82c:32010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.