Whitney regularity and generic wings

V. Navarro Aznar; David J. A. Trotman

Annales de l'institut Fourier (1981)

  • Volume: 31, Issue: 2, page 87-111
  • ISSN: 0373-0956

Abstract

top
Given adjacent subanalytic strata ( X , Y ) in R n verifying Kuo’s ratio test ( r ) (resp. Verdier’s ( w ) -regularity) we find an open dense subset of the codimension k C 1 submanifolds W (wings) containing Y such that ( X W , Y ) is generically Whitney ( b π ) -regular is exactly one more than the dimension of the set of limits of vectors for which ( b π ) fails. A general position argument for smooth strata is also given.

How to cite

top

Aznar, V. Navarro, and Trotman, David J. A.. "Whitney regularity and generic wings." Annales de l'institut Fourier 31.2 (1981): 87-111. <http://eudml.org/doc/74499>.

@article{Aznar1981,
abstract = {Given adjacent subanalytic strata $(X,Y)$ in $\{\bf R\}^n$ verifying Kuo’s ratio test $(r)$ (resp. Verdier’s $(w)$-regularity) we find an open dense subset of the codimension $k$$C^1$ submanifolds $W$ (wings) containing $Y$ such that $(X\cap W,Y)$ is generically Whitney $(b^\pi )$-regular is exactly one more than the dimension of the set of limits of vectors for which $(b^\pi )$ fails. A general position argument for smooth strata is also given.},
author = {Aznar, V. Navarro, Trotman, David J. A.},
journal = {Annales de l'institut Fourier},
keywords = {adjacent subanalytic strata; test; Verdier's (w)-regularity; Whitney -regular; stratification},
language = {eng},
number = {2},
pages = {87-111},
publisher = {Association des Annales de l'Institut Fourier},
title = {Whitney regularity and generic wings},
url = {http://eudml.org/doc/74499},
volume = {31},
year = {1981},
}

TY - JOUR
AU - Aznar, V. Navarro
AU - Trotman, David J. A.
TI - Whitney regularity and generic wings
JO - Annales de l'institut Fourier
PY - 1981
PB - Association des Annales de l'Institut Fourier
VL - 31
IS - 2
SP - 87
EP - 111
AB - Given adjacent subanalytic strata $(X,Y)$ in ${\bf R}^n$ verifying Kuo’s ratio test $(r)$ (resp. Verdier’s $(w)$-regularity) we find an open dense subset of the codimension $k$$C^1$ submanifolds $W$ (wings) containing $Y$ such that $(X\cap W,Y)$ is generically Whitney $(b^\pi )$-regular is exactly one more than the dimension of the set of limits of vectors for which $(b^\pi )$ fails. A general position argument for smooth strata is also given.
LA - eng
KW - adjacent subanalytic strata; test; Verdier's (w)-regularity; Whitney -regular; stratification
UR - http://eudml.org/doc/74499
ER -

References

top
  1. [1] J. BRIANÇON et J.-P. SPEDER, La trivialité topologique n'implique pas les conditions de Whitney, C.R. Acad. Sci, Paris, t. 280, (1975), 365-367. Zbl0331.32010MR54 #13122
  2. [2] J. BRIANÇON et J.-P. SPEDER, Les conditions de Whitney impliquent µ*-constant, Annales de l'Institut Fourier, Grenoble, 26(2) (1976), 153-163. Zbl0331.32012MR54 #7843
  3. [3] J. BRIANÇON et J.-P. SPEDER, Equisingularité et conditions de Whitney, Thèses, Université de Nice, 1976. 
  4. [4] H. BRODERSEN and D. J. A. TROTMAN, Whitney (b)-regularity is strictly weaker than Kuo's ratio test for real algebraic stratifications, Mathematica Scandinavia, 45, (1979), 27-34. Zbl0429.58001MR81i:58008
  5. [5] H. HIRONAKA, Subanalytic sets, in Number Theory, Algebraic Geometry and Commutative Algebra, volume in honour of Y. Akizuki, Kinokuniya, Tokyo (1973), 453-493. Zbl0297.32008MR51 #13275
  6. [6] T.-C. KUO, The ratio test for analytic Whitney stratifications, Liverpool Singularities Symposium I. (ed. C.T.C. Wall), Springer Lecture Notes, Berlin, 192 (1971), 141-149. Zbl0246.32006MR43 #5056
  7. [7] LE D&#0168;NG TRÀNG et K. SAITO, La constance du nombre de Milnor donne des bonnes stratifications. C.R. Acad. Sci., Paris, t. 277 (1973), 793-795. Zbl0283.32007MR50 #2556
  8. [8] V. NAVARRO AZNAR, Conditions de Whitney et sections planes, Inventiones Math., 61 (1980), 199-225. Zbl0449.32013MR82h:32019
  9. [9] B. TEISSIER, Cycles évanescents, sections planes et conditions de Whitney, Singularités de Cargèse, Astérisque (Société Mathématique de France), 7-8 (1973), 285-362. Zbl0295.14003MR51 #10682
  10. [10] B. TEISSIER, Introduction to equisingularity problems, A.M.S. Algebraic Geometry Symposium, Arcata, 1974, Providence, Rhode Island (1975), 593-632. Zbl0322.14008MR54 #10247
  11. [11] B. TEISSIER, Variétés polaires locales et conditions de Whitney, C.R. Acad. Sci., Paris, t. 290 (1980), 799-802. Zbl0496.32009MR82m:32006
  12. [12] R. THOM, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. (1969), 240-284. Zbl0197.20502MR39 #970
  13. [13] D.J.A. TROTMAN, Counterexamples in stratification theory : two discordant horns, Real and Complex Singularities, Oslo, 1976 (éd. P. Holm), Sijthoff et Noordhoff (1977), 679-686. Zbl0378.57012MR57 #1510
  14. [14] D.J.A. TROTMAN, Whitney stratifications : faults and detectors, Thesis, University of Warwick, 1977. 
  15. [15] D.J.A. TROTMAN, Interprétations topologiques des conditions de Whitney, Journées Singulières de Dijon, juin 1978, Astérisque, 59-60 (1979), 233-248. Zbl0416.58004MR81f:58005
  16. [16] J.-L. VERDIER, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math., 36 (1976), 295-312. Zbl0333.32010MR58 #1242
  17. [17] C.T.C. WALL, Regular stratifications, Dynamical Systems, Warwick, 1974, Springer Lecture Notes, 468 (1975), 332-344. Zbl0439.58008MR58 #31184
  18. [18] H. WHITNEY, Local properties of analytic varieties, Diff. and Comb. Topology (ed. S. Cairns), Princeton (1965), 205-244. Zbl0129.39402MR32 #5924
  19. [19] H. WHITNEY, Tangents to an analytic variety. Annals of Math., 81 (1965), 496-549. Zbl0152.27701MR33 #745
  20. [20] B. TEISSIER, The hunting of invariants in the geometry of discriminants, in Real and Complex Singularities, Oslo, 1976 (ed. P. Holm), Sijthoff et Noordhoof, Alphen aan den Rijn, 1977. Zbl0388.32010
  21. [21] J.-P. HENRY et M. MERLE, Sections planes, limites d'espaces tangents et transversalité de variétés polaires, C.R. Acad. Sci., Paris, t. 291 (1980), 291-294. Zbl0472.32005MR82c:32010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.