Courbes rationnelles et droites en position générale

Robin Hartshorne; André Hirschowitz

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 4, page 39-58
  • ISSN: 0373-0956


The general union of a rational curve and lines in P 3 is proven to be of maximal rank.

How to cite


Hartshorne, Robin, and Hirschowitz, André. "Courbes rationnelles et droites en position générale." Annales de l'institut Fourier 35.4 (1985): 39-58. <>.

abstract = {On montre que la réunion générale d’une courbe rationnelle avec des droites dans $\{\bf P\}^3$ est de rang maximum.},
author = {Hartshorne, Robin, Hirschowitz, André},
journal = {Annales de l'institut Fourier},
keywords = {union of a rational curve and lines in projective 3-space; maximal rank},
language = {fre},
number = {4},
pages = {39-58},
publisher = {Association des Annales de l'Institut Fourier},
title = {Courbes rationnelles et droites en position générale},
url = {},
volume = {35},
year = {1985},

AU - Hartshorne, Robin
AU - Hirschowitz, André
TI - Courbes rationnelles et droites en position générale
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 4
SP - 39
EP - 58
AB - On montre que la réunion générale d’une courbe rationnelle avec des droites dans ${\bf P}^3$ est de rang maximum.
LA - fre
KW - union of a rational curve and lines in projective 3-space; maximal rank
UR -
ER -


  1. [1] E. BALLICO, Ph. ELLIA, Generic curves of small genus have maximal rank, Math. Ann., 264 (1983), 211-225. Zbl0501.14017
  2. [2] E. BALLICO, Ph. ELLIA, Sur la postulation des courbes de Pn et de leurs projections, C.R.A.S., 299 (1984), 237-240. Zbl0565.14012
  3. [3] E. BALLICO, Ph. ELLIA, The maximal rank conjecture for non special curves in P3, Invent. Math., 79 (1985), 541-555. Zbl0556.14007
  4. [4] D. EISENBUD, J. HARRIS, Divisors on general curves and cuspidal rational space curves, Invent. Math., (1983), 371-418. Zbl0527.14022MR85h:14019
  5. [5] D. EISENBUD, A. Van de VEN, On the normal bundle of smooth rational space curves, Math. Ann., 256 (1981), 453-463. Zbl0443.14015MR83b:14002
  6. [6] J. FOGARTY, Algebraic families on an algebraic surface, Amer. J. of Math., 90 (1968), 511-521. Zbl0176.18401MR38 #5778
  7. [7] F. GHIONE, G. SACCHIERO, Normal bundles of rational curves. Manuscr. Math., 33 (1980), 111-128. Zbl0496.14021MR82b:14016
  8. [8] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math., 52, Springer Verlag, New York, (1977), XVI + 496 p. Zbl0367.14001MR57 #3116
  9. [9] R. HARTSHORNE, Classification of Algebraic Space Curves, in "Vector Bundles and Differential Equations", Prog. in Math., 7, Birkhäuser, Boston, (1980), 83-112. Zbl0452.14005MR81m:14022
  10. [10] R. HARTSHORNE, A. HIRSCHOWITZ, Droites en position générale dans l'espace projectif, in "Algebraic Geometry", Proc. La Rabida 1981, Springer Lecture Notes in Math., 961, Springer Verlag (1982), 169-189. Zbl0555.14011MR85e:14043
  11. [11] R. HARTSHORNE, A. HIRSCHOWITZ, Smoothing Algebraic Space Curves, in Algebraic Geometry, Sitges 1983, Lecture Notes in Math., 1124 (1985), 98-131. Zbl0574.14028MR87h:14023
  12. [12] R. HARTSHORNE, A. HIRSCHOWITZ, Nouvelles courbes de bon genre via la cohomologie des faisceaux réflexifs, (en préparation). 
  13. [13] A. HIRSCHOWITZ, Sur la postulation générique des courbes rationnelles, Acta Math., 146 (1981), 209-230. Zbl0475.14027MR82j:14028
  14. [14] K. HULEK, The normal bundle of a curve on a quadric, Math. Ann., 258 (1981), 201-206. Zbl0458.14011MR83e:14034
  15. [15] D. PERRIN, Courbes passant par k points généraux de P3, C.R.A.S., 299 (1984), 451-453. Zbl0573.14008MR85j:14056
  16. [16] A. TANNENBAUM, Deformations of Space Curves, Arch. Math., Basel, 34 (1980), 37-42. Zbl0414.14016MR82k:14024
  17. [17] E. BALLICO, Ph. ELLIA, On the postulation of many disjoint rational curves in PN, N ≥ 4, Boll. U.M.I., à paraître. Zbl0591.14041
  18. [18] E. BALLICO, On the postulation of disjoint rational curves in a projective space, Preprint Pisa, 1984. 
  19. [19] E. BALLICO, Ph. ELLIA, Beyond the maximal rank conjecture for curves in P3, preprint n° 76, Nice, 1985. Zbl0556.14007

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.