Extending Tamm's theorem
Lou van den Dries; Chris Miller
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 5, page 1367-1395
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDries, Lou van den, and Miller, Chris. "Extending Tamm's theorem." Annales de l'institut Fourier 44.5 (1994): 1367-1395. <http://eudml.org/doc/75102>.
@article{Dries1994,
abstract = {We extend a result of M. Tamm as follows:Let $f:A\rightarrow \{\Bbb R\},\, A\subseteq \{\Bbb R\}^\{m+n\}$, be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions $x\mapsto x^r:(0,\infty )\rightarrow \{\Bbb R\},\, r\in \{\Bbb R\}$. Then there exists $N\in \{\Bbb N\}$ such that for all $(a,b)\in A$, if $y\mapsto f(a,y)$ is $C^N$ in a neighborhood of $b$, then $y\mapsto f(a,y)$ is real analytic in a neighborhood of $b$.},
author = {Dries, Lou van den, Miller, Chris},
journal = {Annales de l'institut Fourier},
keywords = {o-minimal structure; polynomially bounded structure; Gateaux derivative; real analytic; quasianalytic; finitely subanalytic; Tarski-Seidenberg property; Puiseux expansion},
language = {eng},
number = {5},
pages = {1367-1395},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extending Tamm's theorem},
url = {http://eudml.org/doc/75102},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Dries, Lou van den
AU - Miller, Chris
TI - Extending Tamm's theorem
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 5
SP - 1367
EP - 1395
AB - We extend a result of M. Tamm as follows:Let $f:A\rightarrow {\Bbb R},\, A\subseteq {\Bbb R}^{m+n}$, be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions $x\mapsto x^r:(0,\infty )\rightarrow {\Bbb R},\, r\in {\Bbb R}$. Then there exists $N\in {\Bbb N}$ such that for all $(a,b)\in A$, if $y\mapsto f(a,y)$ is $C^N$ in a neighborhood of $b$, then $y\mapsto f(a,y)$ is real analytic in a neighborhood of $b$.
LA - eng
KW - o-minimal structure; polynomially bounded structure; Gateaux derivative; real analytic; quasianalytic; finitely subanalytic; Tarski-Seidenberg property; Puiseux expansion
UR - http://eudml.org/doc/75102
ER -
References
top- [AM] S. ABHYANKAR and T. MOH, Reduction theorem for divergent power series, J. Reine Angew. Math., 241 (1970), 27-33. Zbl0191.04403MR41 #3800
- [BM] E. BIERSTONE and P. MILMAN, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. Zbl0674.32002MR89k:32011
- [BS] J. BOCHNAK and J. SICIAK, Analytic functions in topological vector spaces, Studia Math., 39 (1971), 77-112. Zbl0214.37703MR47 #2365
- [DD] J. DENEF and L. van den DRIES, p-adic and real subanalytic sets, Ann. of Math., 128 (1988), 79-138. Zbl0693.14012MR89k:03034
- [D1] L. van den DRIES, Remarks on Tarski's problem concerning (ℝ, +, ., exp), Logic Colloquium 1982, eds. G. Lolli, G. Longo and A. Marcja, North Holland, Amsterdam (1984), 97-121. Zbl0585.03006MR86g:03052
- [D2] L. van den DRIES, A generalization of the Tarski-Seidenberg theorem and some nondefinability results, Bull. Amer. Math. Soc. (N.S.), 15 (1986), 189-193. Zbl0612.03008MR88b:03048
- [D3] L. van den DRIES, Tame topology and o-minimal structures, (monograph in preparation). Zbl0953.03045
- [DMM] L. van den DRIES, A. MACINTYRE and D. MARKER, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205. Zbl0837.12006MR95k:12015
- [DM] L. van den DRIES and C. MILLER, On the real exponential field with restricted analytic functions, Israel J. Math., 85 (1994), 19-56. Zbl0823.03017MR95e:03099
- [H] R. HARDT, Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math., 102 (1980), 291-302. Zbl0465.14012MR81d:32012
- [KPS] J. KNIGHT, A. PILLAY and C. STEINHORN, Definable sets in ordered structures. II, Trans. Amer. Math. Soc., 295 (1986), 593-605. Zbl0662.03024MR88b:03050b
- [KR] T. KAYAL and G. RABY, Ensembles sous-analytiques: quelques propriétés globales, C. R. Acad. Sci. Paris, Sér. I Math., 308 (1989), 521-523. Zbl0674.32003MR90d:32016
- [K] K. KURDYKA, Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble), 38-1 (1988), 133-156. Zbl0619.32007MR89g:32010
- [M1] C. MILLER, Exponentiation is hard to avoid, Proc. Amer. Math. Soc., 122 (1994), 257-259. Zbl0808.03022MR94k:03042
- [M2] C. MILLER, Expansions of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94. Zbl0823.03018MR95i:03081
- [M3] C. MILLER, Infinite differentiability in polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., (to appear). Zbl0823.03019
- [P] W. PAWLUCKI, Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math., 32 (1984), 556-560. Zbl0574.32010MR86j:32015
- [PS] A. PILLAY and C. STEINHORN, Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295 (1986), 565-592. Zbl0662.03023MR88b:03050a
- [T] M. TAMM, Subanalytic sets in the calculus of variations, Acta Math., 146 (1981), 167-199. Zbl0478.58010MR82h:32012
- [To] J.-Cl. TOUGERON, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier (Grenoble), 41-4 (1991), 823-840. Zbl0786.32011MR93f:32005
- [W] A. WILKIE, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, Jour. Amer. Math. Soc., (to appear). Zbl0892.03013
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.