Extending Tamm's theorem

Lou van den Dries; Chris Miller

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 5, page 1367-1395
  • ISSN: 0373-0956

Abstract

top
We extend a result of M. Tamm as follows:Let f : A , A m + n , be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions x x r : ( 0 , ) , r . Then there exists N such that for all ( a , b ) A , if y f ( a , y ) is C N in a neighborhood of b , then y f ( a , y ) is real analytic in a neighborhood of b .

How to cite

top

Dries, Lou van den, and Miller, Chris. "Extending Tamm's theorem." Annales de l'institut Fourier 44.5 (1994): 1367-1395. <http://eudml.org/doc/75102>.

@article{Dries1994,
abstract = {We extend a result of M. Tamm as follows:Let $f:A\rightarrow \{\Bbb R\},\, A\subseteq \{\Bbb R\}^\{m+n\}$, be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions $x\mapsto x^r:(0,\infty )\rightarrow \{\Bbb R\},\, r\in \{\Bbb R\}$. Then there exists $N\in \{\Bbb N\}$ such that for all $(a,b)\in A$, if $y\mapsto f(a,y)$ is $C^N$ in a neighborhood of $b$, then $y\mapsto f(a,y)$ is real analytic in a neighborhood of $b$.},
author = {Dries, Lou van den, Miller, Chris},
journal = {Annales de l'institut Fourier},
keywords = {o-minimal structure; polynomially bounded structure; Gateaux derivative; real analytic; quasianalytic; finitely subanalytic; Tarski-Seidenberg property; Puiseux expansion},
language = {eng},
number = {5},
pages = {1367-1395},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extending Tamm's theorem},
url = {http://eudml.org/doc/75102},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Dries, Lou van den
AU - Miller, Chris
TI - Extending Tamm's theorem
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 5
SP - 1367
EP - 1395
AB - We extend a result of M. Tamm as follows:Let $f:A\rightarrow {\Bbb R},\, A\subseteq {\Bbb R}^{m+n}$, be definable in the ordered field of real numbers augmented by all real analytic functions on compact boxes and all power functions $x\mapsto x^r:(0,\infty )\rightarrow {\Bbb R},\, r\in {\Bbb R}$. Then there exists $N\in {\Bbb N}$ such that for all $(a,b)\in A$, if $y\mapsto f(a,y)$ is $C^N$ in a neighborhood of $b$, then $y\mapsto f(a,y)$ is real analytic in a neighborhood of $b$.
LA - eng
KW - o-minimal structure; polynomially bounded structure; Gateaux derivative; real analytic; quasianalytic; finitely subanalytic; Tarski-Seidenberg property; Puiseux expansion
UR - http://eudml.org/doc/75102
ER -

References

top
  1. [AM] S. ABHYANKAR and T. MOH, Reduction theorem for divergent power series, J. Reine Angew. Math., 241 (1970), 27-33. Zbl0191.04403MR41 #3800
  2. [BM] E. BIERSTONE and P. MILMAN, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42. Zbl0674.32002MR89k:32011
  3. [BS] J. BOCHNAK and J. SICIAK, Analytic functions in topological vector spaces, Studia Math., 39 (1971), 77-112. Zbl0214.37703MR47 #2365
  4. [DD] J. DENEF and L. van den DRIES, p-adic and real subanalytic sets, Ann. of Math., 128 (1988), 79-138. Zbl0693.14012MR89k:03034
  5. [D1] L. van den DRIES, Remarks on Tarski's problem concerning (ℝ, +, ., exp), Logic Colloquium 1982, eds. G. Lolli, G. Longo and A. Marcja, North Holland, Amsterdam (1984), 97-121. Zbl0585.03006MR86g:03052
  6. [D2] L. van den DRIES, A generalization of the Tarski-Seidenberg theorem and some nondefinability results, Bull. Amer. Math. Soc. (N.S.), 15 (1986), 189-193. Zbl0612.03008MR88b:03048
  7. [D3] L. van den DRIES, Tame topology and o-minimal structures, (monograph in preparation). Zbl0953.03045
  8. [DMM] L. van den DRIES, A. MACINTYRE and D. MARKER, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183-205. Zbl0837.12006MR95k:12015
  9. [DM] L. van den DRIES and C. MILLER, On the real exponential field with restricted analytic functions, Israel J. Math., 85 (1994), 19-56. Zbl0823.03017MR95e:03099
  10. [H] R. HARDT, Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math., 102 (1980), 291-302. Zbl0465.14012MR81d:32012
  11. [KPS] J. KNIGHT, A. PILLAY and C. STEINHORN, Definable sets in ordered structures. II, Trans. Amer. Math. Soc., 295 (1986), 593-605. Zbl0662.03024MR88b:03050b
  12. [KR] T. KAYAL and G. RABY, Ensembles sous-analytiques: quelques propriétés globales, C. R. Acad. Sci. Paris, Sér. I Math., 308 (1989), 521-523. Zbl0674.32003MR90d:32016
  13. [K] K. KURDYKA, Points réguliers d'un sous-analytique, Ann. Inst. Fourier (Grenoble), 38-1 (1988), 133-156. Zbl0619.32007MR89g:32010
  14. [M1] C. MILLER, Exponentiation is hard to avoid, Proc. Amer. Math. Soc., 122 (1994), 257-259. Zbl0808.03022MR94k:03042
  15. [M2] C. MILLER, Expansions of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79-94. Zbl0823.03018MR95i:03081
  16. [M3] C. MILLER, Infinite differentiability in polynomially bounded o-minimal structures, Proc. Amer. Math. Soc., (to appear). Zbl0823.03019
  17. [P] W. PAWLUCKI, Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math., 32 (1984), 556-560. Zbl0574.32010MR86j:32015
  18. [PS] A. PILLAY and C. STEINHORN, Definable sets in ordered structures. I, Trans. Amer. Math. Soc., 295 (1986), 565-592. Zbl0662.03023MR88b:03050a
  19. [T] M. TAMM, Subanalytic sets in the calculus of variations, Acta Math., 146 (1981), 167-199. Zbl0478.58010MR82h:32012
  20. [To] J.-Cl. TOUGERON, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier (Grenoble), 41-4 (1991), 823-840. Zbl0786.32011MR93f:32005
  21. [W] A. WILKIE, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, Jour. Amer. Math. Soc., (to appear). Zbl0892.03013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.