K-subanalytic rectilinearization and uniformization

Artur Piękosz

Open Mathematics (2003)

  • Volume: 1, Issue: 4, page 441-456
  • ISSN: 2391-5455

Abstract

top
We prove rectilinearization and uniformization theorems for K-subanalytic (∝anK-definable) sets and functions using the Lion-Rolin formula. Parallel reasoning gives standard results for the subanalytic case.

How to cite

top

Artur Piękosz. "K-subanalytic rectilinearization and uniformization." Open Mathematics 1.4 (2003): 441-456. <http://eudml.org/doc/268800>.

@article{ArturPiękosz2003,
abstract = {We prove rectilinearization and uniformization theorems for K-subanalytic (∝anK-definable) sets and functions using the Lion-Rolin formula. Parallel reasoning gives standard results for the subanalytic case.},
author = {Artur Piękosz},
journal = {Open Mathematics},
keywords = {32B20; 14P15},
language = {eng},
number = {4},
pages = {441-456},
title = {K-subanalytic rectilinearization and uniformization},
url = {http://eudml.org/doc/268800},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Artur Piękosz
TI - K-subanalytic rectilinearization and uniformization
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 441
EP - 456
AB - We prove rectilinearization and uniformization theorems for K-subanalytic (∝anK-definable) sets and functions using the Lion-Rolin formula. Parallel reasoning gives standard results for the subanalytic case.
LA - eng
KW - 32B20; 14P15
UR - http://eudml.org/doc/268800
ER -

References

top
  1. [1] E. Bierstone and P. Milman: “Semianalytic and subanalytuc sets”, Inst. Hautes Étudies Sci. Publ. Math., Vol. 67, (1988), pp. 5–42. Zbl0674.32002
  2. [2] L. van den Dries: “A generalization of the Tarski-Seidenberg theorem and some nondefinability results”, Bull. Amer. Math. Soc. (N. S.), Vol. 15, (1986), pp. 189–193. http://dx.doi.org/10.1090/S0273-0979-1986-15468-6 Zbl0612.03008
  3. [3] L. van den Dries and C. Miller: “Extending Tamm's theorem”, Ann. Inst. Fourier, Grenoble, Vol. 44, (1994), pp. 1367–1395. Zbl0816.32004
  4. [4] L. van den Dries and C. Miller: “Geometric categories and o-minimal structures”, Duke Math. Journal, Vol. 84, (1996), pp. 497–540. http://dx.doi.org/10.1215/S0012-7094-96-08416-1 Zbl0889.03025
  5. [5] H. Hironaka: Introduction to real-analytic sets and real-analytic maps, Inst. Matem. “L. Tonelli”, Pisa, 1973. 
  6. [6] J.-M. Lion and J.-P. Rolin: “Théorème de préparation pour les fonctions logarithmico-exponentielles”, Ann. Inst. Fourier, Grenoble, Vol. 47, (1997), pp. 859–884. Zbl0873.32004
  7. [7] C. Miller: “Expansions of the real field with power functions”, Ann. Pure Appl. Logic, Vol. 68, (1994), pp. 79–84. http://dx.doi.org/10.1016/0168-0072(94)90048-5 
  8. [8] A. Parusiński: “Subanalytic functions”, Trans. Amer. Math. Soc., Vol. 344, (1994), pp. 583–595. http://dx.doi.org/10.2307/2154496 Zbl0819.32006
  9. [9] A. Parusiński: “Lipschitz stratification of subanalytic sets”, Ann. Scient. Éc. Norm. Sup., 4e série, t. 27, (1994), pp. 661–696. Zbl0819.32007
  10. [10] A. Parusiński: “On the preparation theorem for subanalytic functions”, In: D. Siersma, C.T.C. Wall, V. Zakalyukin, (Eds.): New developments in singularity theory (Cambridge 2000), Kluwer Acad. Publ., 2001, pp. 193–215. Zbl0994.32007
  11. [11] J.-Cl. Tougeron: “Paramétrisations de petits chemins en géométrie analytique réelle”, In: Singularities and differential equations (Warsaw 1993), Banach Center Publications, Vol. 33, (1996), pp. 421–436. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.