Remarques sur les différentielles des polylogarithmes uniformes

Jean-Louis Cathelineau

Annales de l'institut Fourier (1996)

  • Volume: 46, Issue: 5, page 1327-1347
  • ISSN: 0373-0956

Abstract

top
The purpose of the article is to study functional equations for the differentials of polylogarithms. One of the main ingredients is an infinitesimal analogue of a complex introduced by Goncharov. As a result, one obtains a 22-term relation for the differential of the trilogarithm.

How to cite

top

Cathelineau, Jean-Louis. "Remarques sur les différentielles des polylogarithmes uniformes." Annales de l'institut Fourier 46.5 (1996): 1327-1347. <http://eudml.org/doc/75215>.

@article{Cathelineau1996,
abstract = {On étudie des équations fonctionnelles pour les différentielles des polylogarithmes uniformes. Un des ingrédients est l’analogue infinitésimal d’un complexe introduit par Goncharov. On obtient en particulier une équation fonctionnelle à 22 termes pour la différentielle du trilogarithme.},
author = {Cathelineau, Jean-Louis},
journal = {Annales de l'institut Fourier},
keywords = {uniform polylogarithms; functional identities; Goncharov complexes; algebraic -theory; functional equations; differentials of polylogarithms; trilogarithm},
language = {fre},
number = {5},
pages = {1327-1347},
publisher = {Association des Annales de l'Institut Fourier},
title = {Remarques sur les différentielles des polylogarithmes uniformes},
url = {http://eudml.org/doc/75215},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Cathelineau, Jean-Louis
TI - Remarques sur les différentielles des polylogarithmes uniformes
JO - Annales de l'institut Fourier
PY - 1996
PB - Association des Annales de l'Institut Fourier
VL - 46
IS - 5
SP - 1327
EP - 1347
AB - On étudie des équations fonctionnelles pour les différentielles des polylogarithmes uniformes. Un des ingrédients est l’analogue infinitésimal d’un complexe introduit par Goncharov. On obtient en particulier une équation fonctionnelle à 22 termes pour la différentielle du trilogarithme.
LA - fre
KW - uniform polylogarithms; functional identities; Goncharov complexes; algebraic -theory; functional equations; differentials of polylogarithms; trilogarithm
UR - http://eudml.org/doc/75215
ER -

References

top
  1. [1] J. ACZÉL, The state of the second part of Hilbert's fifth problem, Bull. Amer. Math. Soc., 20 (1989), 153-163. Zbl0676.39004MR90h:39017
  2. [2] S. BLOCH, Higher regulators, algebraic K-theory and zeta functions of elliptic curves, Lect. notes, Irvine, 1977. 
  3. [3] S. BLOCH, Applications of the dilogarithm function in algebraic K-theory and algebraic geometry, Proc. Int. Symp. Alg. Geom., Kyoto, (1977), 1-14. Zbl0416.18016
  4. [4] J.-L. CHATELINEAU, Sur l'homologie de SL2 à coefficients dans l'action adjointe, Math. Scand., 63 (1988), 51-86. Zbl0682.55013
  5. [5] J.-L. CATHELINEAU, θ-Structures in Algebraic K-Theory and Cyclic Homology, K-Theory, 4 (1991), 591-606. Zbl0735.19005MR92k:19003
  6. [6] J.-L. CATHELINEAU, Homologie du groupe linéaire et polylogarithmes (d'après Goncharov et d'autres), Séminaire Bourbaki, 772 (1992-1993), Astérisque, 216 (1993), 311-341. Zbl0845.19003MR95c:19004
  7. [7] J. DUPONT, C. H. SAH, Scissors congruences II, J. Pure Appl. Alg., 25 (1982), 159-195. Zbl0496.52004MR84b:53062b
  8. [8] Ph. ELBAZ-VINCENT, K3 indécomposable des anneaux et homologie de SL2, Thèse de doctorat, Université de Nice Sophia-Antipolis (1995). 
  9. [9] A.B. GONCHAROV, Geometry of configurations, polylogarithms and motivic cohomology, Adv. Math., 114 (1995), 197-318. Zbl0863.19004MR96g:19005
  10. [10] A.B. GONCHAROV, Polylogarithms and motivic Galois groups, Proc. of the Seattle conf. on motives, Seattle july 1991, AMS Proc. Symp. in Pure Math., 2, 55 (1994), 43-96. Zbl0842.11043MR94m:19003
  11. [11] S. LICHTENBAUM, Groups related to scissors congruence groups, Contemp. Math., 83 (1989), 151-157. Zbl0674.55012MR90e:20030
  12. [12] J. OESTERLÉ, Polylogarithmes, Sém. Bourbaki, 762 (1992-1993), Astérisque, 216 (1993), 49-67. Zbl0799.11056MR94m:11135
  13. [13] A.A. SUSLIN, Algebraic K-theory of fields, Proc. Int. Cong. of Math., 1986, Berkeley, 222-243. Zbl0675.12005MR89k:12010
  14. [14] A.A. SUSLIN, K3 of a field and the Bloch group, Proc. Steklov Inst. of Math., 4 (1991), 217-239. Zbl0741.19005
  15. [15] Z. WOJTKOWIAK, A construction of analogs of the Bloch-Wigner function, Math. Scand., 65 (1989), 140-142. Zbl0698.33002MR92b:11084
  16. [16] D. ZAGIER, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, Proc. Texel Conf. on Arithm. Alg. Geometry 1989, Birkhäuser, Boston (1991), 391-430. Zbl0728.11062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.