An additive version of higher Chow groups

Spencer Bloch; Hélène Esnault

Annales scientifiques de l'École Normale Supérieure (2003)

  • Volume: 36, Issue: 3, page 463-477
  • ISSN: 0012-9593

How to cite

top

Bloch, Spencer, and Esnault, Hélène. "An additive version of higher Chow groups." Annales scientifiques de l'École Normale Supérieure 36.3 (2003): 463-477. <http://eudml.org/doc/82607>.

@article{Bloch2003,
author = {Bloch, Spencer, Esnault, Hélène},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {3},
pages = {463-477},
publisher = {Elsevier},
title = {An additive version of higher Chow groups},
url = {http://eudml.org/doc/82607},
volume = {36},
year = {2003},
}

TY - JOUR
AU - Bloch, Spencer
AU - Esnault, Hélène
TI - An additive version of higher Chow groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2003
PB - Elsevier
VL - 36
IS - 3
SP - 463
EP - 477
LA - eng
UR - http://eudml.org/doc/82607
ER -

References

top
  1. [1] Aomoto K., Un théorème du type de Matsushima–Murakami concernant l'intégrale des fonctions multiformes, J. Math. Pures Appl.52 (1973) 1-11. Zbl0276.32003MR396563
  2. [2] Beilinson A., Goncharov A., Schechtman V., Varchenko A., Aomoto dilogarithms, mixed Hodge structures, and motivic cohomology of a pair of triangles in the plane, in: The Grothendieck Festschrift, Birkhäuser, 1990, pp. 131-172. Zbl0737.14003
  3. [3] Bloch S., Algebraic cycles and higher K-theory, Adv. Math.61 (3) (1986) 267-304. Zbl0608.14004MR852815
  4. [4] Brieskorn E., Sur les groupes de tresses, in: Sém. Bourbaki 401, Lect. Notes in Math., 317, Springer, Berlin, 1973, pp. 21-44. Zbl0277.55003MR422674
  5. [5] Cathelineau J.-L., Remarques sur les différentielles des polylogarithmes uniformes, Ann. Inst. Fourier, Grenoble46 (5) (1996) 1327-1347. Zbl0861.19003MR1427128
  6. [6] Goncharov A., Volumes of hyperbolic manifolds and mixed Tate motives, JAMS12 (2) (1999) 569-618. Zbl0919.11080MR1649192
  7. [7] Nesterenko Yu., Suslin A., Homology of the general linear group over a local ring, and Milnor's K-theory, Izv. Akad. Nauk SSSR Ser. Math.53 (1) (1989) 121-146, translation in: , Math. USSR-Izv.34 (1) (1990) 121-145. Zbl0684.18001MR992981
  8. [8] Totaro B., Milnor K-theory is the simplest part of algebraic K-theory, K-Theory6 (2) (1992) 177-189. Zbl0776.19003MR1187705
  9. [9] Voevodsky V., Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not.7 (7) (2002) 351-355. Zbl1057.14026MR1883180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.