The tangent complex to the Bloch-Suslin complex
Bulletin de la Société Mathématique de France (2007)
- Volume: 135, Issue: 4, page 565-597
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topCathelineau, Jean-Louis. "The tangent complex to the Bloch-Suslin complex." Bulletin de la Société Mathématique de France 135.4 (2007): 565-597. <http://eudml.org/doc/272446>.
@article{Cathelineau2007,
abstract = {Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of $\mathrm \{SL\}_2$. The tangent complex to the trilogarithmic complex of Goncharov is also considered.},
author = {Cathelineau, Jean-Louis},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Bloch-Suslin complex; additive dilogarithm; tangent functors},
language = {eng},
number = {4},
pages = {565-597},
publisher = {Société mathématique de France},
title = {The tangent complex to the Bloch-Suslin complex},
url = {http://eudml.org/doc/272446},
volume = {135},
year = {2007},
}
TY - JOUR
AU - Cathelineau, Jean-Louis
TI - The tangent complex to the Bloch-Suslin complex
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 4
SP - 565
EP - 597
AB - Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of $\mathrm {SL}_2$. The tangent complex to the trilogarithmic complex of Goncharov is also considered.
LA - eng
KW - Bloch-Suslin complex; additive dilogarithm; tangent functors
UR - http://eudml.org/doc/272446
ER -
References
top- [1] S. Bloch – « On the tangent functor to Quillen -theory », in Algebraic -theory, I: Higher -theories (Proc. Conf., Battelle Memorial Inst., Seattle Wash., 1972), Springer, 1973, p. 205–210. Lecture Notes in Math. Vol. 341. Zbl0287.18016MR466264
- [2] —, Higher regulators, algebraic -theory, and zeta functions of elliptic curves, CRM Monograph Series, vol. 11, American Mathematical Society, 2000. Zbl0958.19001MR1760901
- [3] S. Bloch & H. Esnault – « The additive dilogarithm », Doc. Math. (2003), p. 131–155, Kazuya Kato’s fiftieth birthday. Zbl1052.11048MR2046597
- [4] —, « An additive version of higher Chow groups », Ann. Sci. École Norm. Sup. (4) 36 (2003), p. 463–477. Zbl1100.14014MR1977826
- [5] P. Cartier – « Décomposition des polyèdres: le point sur le troisième problème de Hilbert », Astérisque (1986), p. 261–288, Séminaire Bourbaki, vol. 1984/85. Zbl0589.51032MR837225
- [6] J.-L. Cathelineau – « Sur l’homologie de à coefficients dans l’action adjointe », Math. Scand.63 (1988), p. 51–86. Zbl0682.55013MR994970
- [7] —, « -structures in algebraic -theory and cyclic homology », -Theory 4 (1990/91), p. 591–606. Zbl0735.19005MR1123180
- [8] —, « Remarques sur les différentielles des polylogarithmes uniformes », Ann. Inst. Fourier (Grenoble) 46 (1996), p. 1327–1347. Zbl0861.19003MR1427128
- [9] J. L. Dupont – Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics, vol. 1, World Scientific Publishing Co. Inc., 2001. Zbl0977.52020MR1832859
- [10] J. L. Dupont & C. H. Sah – « Scissors congruences. II », J. Pure Appl. Algebra25 (1982), p. 159–195. Zbl0496.52004MR662760
- [11] P. Elbaz-Vincent – « The indecomposable of rings and homology of », J. Pure Appl. Algebra132 (1998), p. 27–71. Zbl0926.19001MR1634380
- [12] —, « Homology of linear groups with coefficients in the adjoint action and -theory », -Theory 16 (1999), p. 35–50. Zbl0918.19001MR1673927
- [13] P. Elbaz-Vincent & H. Gangl – « On poly(ana)logs. I », Compositio Math.130 (2002), p. 161–210. Zbl1062.11042MR1883818
- [14] A. Goncharov – « Polylogarithms and motivic Galois groups », in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., 1994, p. 43–96. Zbl0842.11043MR1265551
- [15] —, « Geometry of configurations, polylogarithms, and motivic cohomology », Adv. Math.114 (1995), p. 197–318. Zbl0863.19004MR1348706
- [16] —, « Volumes of hyperbolic manifolds and mixed Tate motives », J. Amer. Math. Soc.12 (1999), p. 569–618. Zbl0919.11080MR1649192
- [17] —, « Euclidean scissor congruence groups and mixed Tate motives over dual numbers », Math. Res. Lett.11 (2004), p. 771–784. Zbl1122.11043MR2106241
- [18] T. G. Goodwillie – « Relative algebraic -theory and cyclic homology », Ann. of Math. (2) 124 (1986), p. 347–402. Zbl0627.18004MR855300
- [19] J.-G. Grebet – « Aspects infinitésimaux du troisième problème de Hilbert », Thèse, Univ. de Nice Sophia-Antipolis, 2001.
- [20] M. Green & P. Griffiths – « Formal deformation of Chow groups », in The legacy of Niels Henrik Abel, Springer, 2004, p. 467–509. Zbl1142.14302MR2077581
- [21] —, On the tangent space to the space of algebraic cycles on a smooth algebraic variety, Annals of Mathematics Studies, vol. 157, Princeton University Press, 2005. Zbl1076.14016MR2110875
- [22] W. van der Kallen – « Le des nombres duaux », C. R. Acad. Sci. Paris Sér. A-B 273 (1971), p. A1204–A1207. Zbl0225.13006MR291158
- [23] M. Kontsevich – « The -logarithm. Appendix to: “On poly(ana)logs. I” [Compositio Math 130 (2002), no. 2, 161–210] by P. Elbaz-Vincent and H. Gangl », Compositio Math.130 (2002), p. 211–214. Zbl1062.11042MR1884238
- [24] S. Lichtenbaum – « Groups related to scissors-congruence groups », in Algebraic -theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., 1989, p. 151–157. Zbl0674.55012MR991980
- [25] H. Matsumura – Commutative algebra, W. A. Benjamin, Inc., New York, 1970. Zbl0441.13001MR266911
- [26] J. Park – « Regulators on additive higher Chow groups », preprint, 2006. Zbl1176.14001MR2488491
- [27] —, « Algebraic cycles and additive dilogarithm », Int. Math. Res. Not. IMRN (2007). Zbl1124.14013MR2358889
- [28] K. Rülling – « Additive Chow groups with higher modulus and the generalized de Rham-Witt complex », J. Algebraic Geom. (2007), p. 109–169.
- [29] C. H. Sah – Letter to the author, August 1986.
- [30] J-P. Serre – Corps locaux, Hermann, 1968, 2e édition, Publications de l’Université de Nancago, No. VIII. Zbl0137.02601MR354618
- [31] A. Suslin – « of a field and the Bloch group », Proc. Steklov Inst. Math.4 (1991), p. 217–239. Zbl0741.19005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.