The tangent complex to the Bloch-Suslin complex

Jean-Louis Cathelineau

Bulletin de la Société Mathématique de France (2007)

  • Volume: 135, Issue: 4, page 565-597
  • ISSN: 0037-9484

Abstract

top
Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of SL 2 . The tangent complex to the trilogarithmic complex of Goncharov is also considered.

How to cite

top

Cathelineau, Jean-Louis. "The tangent complex to the Bloch-Suslin complex." Bulletin de la Société Mathématique de France 135.4 (2007): 565-597. <http://eudml.org/doc/272446>.

@article{Cathelineau2007,
abstract = {Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of $\mathrm \{SL\}_2$. The tangent complex to the trilogarithmic complex of Goncharov is also considered.},
author = {Cathelineau, Jean-Louis},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Bloch-Suslin complex; additive dilogarithm; tangent functors},
language = {eng},
number = {4},
pages = {565-597},
publisher = {Société mathématique de France},
title = {The tangent complex to the Bloch-Suslin complex},
url = {http://eudml.org/doc/272446},
volume = {135},
year = {2007},
}

TY - JOUR
AU - Cathelineau, Jean-Louis
TI - The tangent complex to the Bloch-Suslin complex
JO - Bulletin de la Société Mathématique de France
PY - 2007
PB - Société mathématique de France
VL - 135
IS - 4
SP - 565
EP - 597
AB - Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of $\mathrm {SL}_2$. The tangent complex to the trilogarithmic complex of Goncharov is also considered.
LA - eng
KW - Bloch-Suslin complex; additive dilogarithm; tangent functors
UR - http://eudml.org/doc/272446
ER -

References

top
  1. [1] S. Bloch – « On the tangent functor to Quillen K -theory », in Algebraic K -theory, I: Higher K -theories (Proc. Conf., Battelle Memorial Inst., Seattle Wash., 1972), Springer, 1973, p. 205–210. Lecture Notes in Math. Vol. 341. Zbl0287.18016MR466264
  2. [2] —, Higher regulators, algebraic K -theory, and zeta functions of elliptic curves, CRM Monograph Series, vol. 11, American Mathematical Society, 2000. Zbl0958.19001MR1760901
  3. [3] S. Bloch & H. Esnault – « The additive dilogarithm », Doc. Math. (2003), p. 131–155, Kazuya Kato’s fiftieth birthday. Zbl1052.11048MR2046597
  4. [4] —, « An additive version of higher Chow groups », Ann. Sci. École Norm. Sup. (4) 36 (2003), p. 463–477. Zbl1100.14014MR1977826
  5. [5] P. Cartier – « Décomposition des polyèdres: le point sur le troisième problème de Hilbert », Astérisque (1986), p. 261–288, Séminaire Bourbaki, vol. 1984/85. Zbl0589.51032MR837225
  6. [6] J.-L. Cathelineau – « Sur l’homologie de SL 2 à coefficients dans l’action adjointe », Math. Scand.63 (1988), p. 51–86. Zbl0682.55013MR994970
  7. [7] —, « λ -structures in algebraic K -theory and cyclic homology », K -Theory 4 (1990/91), p. 591–606. Zbl0735.19005MR1123180
  8. [8] —, « Remarques sur les différentielles des polylogarithmes uniformes », Ann. Inst. Fourier (Grenoble) 46 (1996), p. 1327–1347. Zbl0861.19003MR1427128
  9. [9] J. L. Dupont – Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics, vol. 1, World Scientific Publishing Co. Inc., 2001. Zbl0977.52020MR1832859
  10. [10] J. L. Dupont & C. H. Sah – « Scissors congruences. II », J. Pure Appl. Algebra25 (1982), p. 159–195. Zbl0496.52004MR662760
  11. [11] P. Elbaz-Vincent – « The indecomposable K 3 of rings and homology of SL 2 », J. Pure Appl. Algebra132 (1998), p. 27–71. Zbl0926.19001MR1634380
  12. [12] —, « Homology of linear groups with coefficients in the adjoint action and K -theory », K -Theory 16 (1999), p. 35–50. Zbl0918.19001MR1673927
  13. [13] P. Elbaz-Vincent & H. Gangl – « On poly(ana)logs. I », Compositio Math.130 (2002), p. 161–210. Zbl1062.11042MR1883818
  14. [14] A. Goncharov – « Polylogarithms and motivic Galois groups », in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., 1994, p. 43–96. Zbl0842.11043MR1265551
  15. [15] —, « Geometry of configurations, polylogarithms, and motivic cohomology », Adv. Math.114 (1995), p. 197–318. Zbl0863.19004MR1348706
  16. [16] —, « Volumes of hyperbolic manifolds and mixed Tate motives », J. Amer. Math. Soc.12 (1999), p. 569–618. Zbl0919.11080MR1649192
  17. [17] —, « Euclidean scissor congruence groups and mixed Tate motives over dual numbers », Math. Res. Lett.11 (2004), p. 771–784. Zbl1122.11043MR2106241
  18. [18] T. G. Goodwillie – « Relative algebraic K -theory and cyclic homology », Ann. of Math. (2) 124 (1986), p. 347–402. Zbl0627.18004MR855300
  19. [19] J.-G. Grebet – « Aspects infinitésimaux du troisième problème de Hilbert », Thèse, Univ. de Nice Sophia-Antipolis, 2001. 
  20. [20] M. Green & P. Griffiths – « Formal deformation of Chow groups », in The legacy of Niels Henrik Abel, Springer, 2004, p. 467–509. Zbl1142.14302MR2077581
  21. [21] —, On the tangent space to the space of algebraic cycles on a smooth algebraic variety, Annals of Mathematics Studies, vol. 157, Princeton University Press, 2005. Zbl1076.14016MR2110875
  22. [22] W. van der Kallen – « Le K 2 des nombres duaux », C. R. Acad. Sci. Paris Sér. A-B 273 (1971), p. A1204–A1207. Zbl0225.13006MR291158
  23. [23] M. Kontsevich – « The 1 1 2 -logarithm. Appendix to: “On poly(ana)logs. I” [Compositio Math 130 (2002), no. 2, 161–210] by P. Elbaz-Vincent and H. Gangl », Compositio Math.130 (2002), p. 211–214. Zbl1062.11042MR1884238
  24. [24] S. Lichtenbaum – « Groups related to scissors-congruence groups », in Algebraic K -theory and algebraic number theory (Honolulu, HI, 1987), Contemp. Math., vol. 83, Amer. Math. Soc., 1989, p. 151–157. Zbl0674.55012MR991980
  25. [25] H. Matsumura – Commutative algebra, W. A. Benjamin, Inc., New York, 1970. Zbl0441.13001MR266911
  26. [26] J. Park – « Regulators on additive higher Chow groups », preprint, 2006. Zbl1176.14001MR2488491
  27. [27] —, « Algebraic cycles and additive dilogarithm », Int. Math. Res. Not. IMRN (2007). Zbl1124.14013MR2358889
  28. [28] K. Rülling – « Additive Chow groups with higher modulus and the generalized de Rham-Witt complex », J. Algebraic Geom. (2007), p. 109–169. 
  29. [29] C. H. Sah – Letter to the author, August 1986. 
  30. [30] J-P. Serre – Corps locaux, Hermann, 1968, 2e édition, Publications de l’Université de Nancago, No. VIII. Zbl0137.02601MR354618
  31. [31] A. Suslin – « K 3 of a field and the Bloch group », Proc. Steklov Inst. Math.4 (1991), p. 217–239. Zbl0741.19005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.