Positive cohomology classes in compact Kähler varieties
Séminaire Bourbaki (2004-2005)
- Volume: 47, page 199-228
- ISSN: 0303-1179
Access Full Article
topAbstract
topHow to cite
topDebarre, Olivier. "Classes de cohomologie positives dans les variétés kählériennes compactes." Séminaire Bourbaki 47 (2004-2005): 199-228. <http://eudml.org/doc/252164>.
@article{Debarre2004-2005,
abstract = {Étant donnée une variété kählérienne compacte $X$, on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault $H^\{1,1\}(X,\{\bf R\})\subset H^2(X,\{\bf R\})$ le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type $(1,1)$. Lorsque $X$ est projective, les traces de ces cônes sur l’espace de Néron–Severi $\mathop \{\rm NS\}\nolimits (X)_\{\bf R\}\subset H^\{1,1\}(X,\{\bf R\})$ engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.},
author = {Debarre, Olivier},
journal = {Séminaire Bourbaki},
keywords = {kähler manifold; hyperkähler manifold; ample cone; nef cone; pseudo-effective cone; big cone; Kähler cone; current; singular metric; Zariski decomposition; volume of a line bundle; uniruled variety; mobile curve},
language = {fre},
pages = {199-228},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Classes de cohomologie positives dans les variétés kählériennes compactes},
url = {http://eudml.org/doc/252164},
volume = {47},
year = {2004-2005},
}
TY - JOUR
AU - Debarre, Olivier
TI - Classes de cohomologie positives dans les variétés kählériennes compactes
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 199
EP - 228
AB - Étant donnée une variété kählérienne compacte $X$, on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault $H^{1,1}(X,{\bf R})\subset H^2(X,{\bf R})$ le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type $(1,1)$. Lorsque $X$ est projective, les traces de ces cônes sur l’espace de Néron–Severi $\mathop {\rm NS}\nolimits (X)_{\bf R}\subset H^{1,1}(X,{\bf R})$ engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
LA - fre
KW - kähler manifold; hyperkähler manifold; ample cone; nef cone; pseudo-effective cone; big cone; Kähler cone; current; singular metric; Zariski decomposition; volume of a line bundle; uniruled variety; mobile curve
UR - http://eudml.org/doc/252164
ER -
References
top- [1] T. Bauer, , A. Küronya & T. Szemberg – “Zariski chambers, volumes, and stable base loci”, J. Reine Angew. Math. 576 (2004), p. 209–233. Zbl1055.14007MR2099205
- [2] A. Beauville – “Variétés Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom. 18 (1983), no. 4, p. 755–782 (1984). Zbl0537.53056MR730926
- [3] P. Biran – “Symplectic packing in dimension ”, Geom. Funct. Anal. 7 (1997), no. 3, p. 420–437. Zbl0892.53022MR1466333
- [4] —, “From symplectic packing to algebraic geometry and back”, in European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math., vol. 202, Birkhäuser, Basel, 2001, p. 507–524. Zbl1047.53054MR1909952
- [5] S. Boucksom – “Le cône kählérien d’une variété hyperkählérienne”, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 10, p. 935–938. Zbl1068.32014MR1873811
- [6] —, “Cônes positifs des variétés complexes compactes”, Thèse, Grenoble, 2002.
- [7] —, “On the volume of a line bundle”, Internat. J. Math. 13 (2002), no. 10, p. 1043–1063. Zbl1101.14008MR1945706
- [8] —, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, p. 45–76. Zbl1054.32010MR2050205
- [9] S. Boucksom, J.-P. Demailly, M. Păun & T. Peternell – “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, eprint math.AG/0405285. Zbl1267.32017
- [10] N. Buchdahl – “On compact Kähler surfaces”, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, p. vii, xi, 287–302. Zbl0926.32025MR1688136
- [11] F. Campana & M. Păun – “Une généralisation du théorème de Kobayashi-Ochiai”, eprint math.AG/0506366. Zbl1160.32020
- [12] F. Campana & T. Peternell – “Algebraicity of the ample cone of projective varieties”, J. Reine Angew. Math.407 (1990), p. 160–166. Zbl0728.14004MR1048532
- [13] S. D. Cutkosky – “Zariski decomposition of divisors on algebraic varieties”, Duke Math. J. 53 (1986), no. 1, p. 149–156. Zbl0604.14002MR835801
- [14] S. D. Cutkosky & V. Srinivas – “On a problem of Zariski on dimensions of linear systems”, Ann. of Math. (2) 137 (1993), no. 3, p. 531–559. Zbl0822.14006MR1217347
- [15] J.-P. Demailly – “Champs magnétiques et inégalités de Morse pour la -cohomologie”, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 4, p. 119–122. Zbl0595.58014MR799607
- [16] —, “Singular Hermitian metrics on positive line bundles”, in Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, p. 87–104. Zbl0784.32024MR1178721
- [17] —, “Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, p. 285–360. Zbl0919.32014MR1492539
- [18] —, “On the geometry of positive cones of projective and Kähler varieties”, in The Fano Conference, Univ. Torino, Turin, 2004, p. 395–422. Zbl1071.14013
- [19] J.-P. Demailly & M. Păun – “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2) 159 (2004), no. 3, p. 1247–1274. Zbl1064.32019MR2113021
- [20] J.-P. Demailly, T. Peternell & M. a. Schneider – “Compact complex manifolds with numerically effective tangent bundles”, J. Algebraic Geom. 3 (1994), no. 2, p. 295–345. Zbl0827.14027MR1257325
- [21] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye & M. Popa – “Asymptotic invariants of base loci”, eprint math.AG/0308116, Ann. Inst. Fourier, à paraître. Zbl1127.14010
- [22] T. Fujita – “On Zariski problem”, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, p. 106–110. Zbl0444.14026MR531454
- [23] J. E. Goodman – “Affine open subsets of algebraic varieties and ample divisors”, Ann. of Math. (2) 89 (1969), p. 160–183. Zbl0159.50504MR242843
- [24] D. Huybrechts – “Compact hyper-Kähler manifolds : basic results”, Invent. Math. 135 (1999), no. 1, p. 63–113. Zbl0953.53031MR1664696
- [25] —, “Erratum : “Compact hyper-Kähler manifolds : basic results” [Invent. Math. 135 (1999), no. 1, 63–113 ; MR1664696 (2000a :32039)]”, Invent. Math. 152 (2003), no. 1, p. 209–212. Zbl1029.53058
- [26] —, “The Kähler cone of a compact hyperkähler manifold”, Math. Ann. 326 (2003), no. 3, p. 499–513. Zbl1023.14015MR1992275
- [27] Y. Kawamata – “The Zariski decomposition of log-canonical divisors”, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, p. 425–433. Zbl0656.14006MR927965
- [28] K. Kodaira – “Holomorphic mappings of polydiscs into compact complex manifolds”, J. Differential Geometry 6 (1971/72), p. 33–46. Zbl0227.32008MR301228
- [29] A. Kouvidakis – “Divisors on symmetric products of curves”, Trans. Amer. Math. Soc. 337 (1993), no. 1, p. 117–128. Zbl0788.14019MR1149124
- [30] S. J. Kovács – “The cone of curves of a surface”, Math. Ann. 300 (1994), no. 4, p. 681–691. Zbl0813.14026MR1314742
- [31] A. Lamari – “Courants kählériens et surfaces compactes”, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, p. vii, x, 263–285. Zbl0926.32026MR1688140
- [32] —, “Le cône kählérien d’une surface”, J. Math. Pures Appl. (9) 78 (1999), no. 3, p. 249–263. Zbl0941.32007MR1687094
- [33] R. Lazarsfeld – Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Zbl1093.14500MR2095471
- [34] —, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Zbl0633.14016MR2095472
- [35] D. McDuff & L. Polterovich – “Symplectic packings and algebraic geometry”, Invent. Math. 115 (1994), no. 3, p. 405–434. Zbl0833.53028MR1262938
- [36] Y. Miyaoka & S. Mori – “A numerical criterion for uniruledness”, Ann. of Math. (2) 124 (1986), no. 1, p. 65–69. Zbl0606.14030MR847952
- [37] M. Nagata – “On the -th problem of Hilbert”, Amer. J. Math.81 (1959), p. 766–772. Zbl0192.13801MR105409
- [38] M. Nakamaye – “Stable base loci of linear series”, Math. Ann. 318 (2000), no. 4, p. 837–847. Zbl1063.14008MR1802513
- [39] —, “Base loci of linear series are numerically determined”, Trans. Amer. Math. Soc. 355 (2003), no. 2, p. 551–566 (electronic). Zbl1017.14017MR1932713
- [40] N. Nakayama – “A counterexample to the Zariski-decomposition conjecture”, Hodge Theory and Algebraic Geometry, Hokkaido Univ., Infinite Analysis Lecture Notes, vol. 19, Kyoto University, 1994, p. 96–101.
- [41] —, “Zariski-decomposition and Abundance”, preprint, 1997.
- [42] G. Pacienza – “On the nef cone of symmetric products of a generic curve”, Amer. J. Math. 125 (2003), no. 5, p. 1117–1135. Zbl1056.14042MR2004430
- [43] S. Payne – “Stable base loci, movable curves, and small modifications, for toric varieties”, eprint math.AG/0506622, Math. Zeit., à paraître. Zbl1097.14007
- [44] P. R. Thie – “The Lelong number of a point of a complex analytic set”, Math. Ann.172 (1967), p. 269–312. Zbl0158.32804MR214812
- [45] O. Zariski – “The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface”, Ann. of Math. (2) 76 (1962), p. 560–615. Zbl0124.37001MR141668
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.