Positive cohomology classes in compact Kähler varieties

Olivier Debarre

Séminaire Bourbaki (2004-2005)

  • Volume: 47, page 199-228
  • ISSN: 0303-1179

Abstract

top
Let X be a compact Kähler manifold. In the real vector space H 1 , 1 ( X , 𝐑 ) H 2 ( X , 𝐑 ) of Dolbeault cohomology classes of type ( 1 , 1 ) , we study the convex cone of Kähler classes and the larger cone of classes of positive closed currents of type ( 1 , 1 ) . When X is projective, theses cones cut out, on the Néron–Severi subspace NS ( X ) 𝐑 H 1 , 1 ( X , 𝐑 ) generated by integral classes, the cone of classes of ample divisors and the closure of the cone of classes of effective divisors.

How to cite

top

Debarre, Olivier. "Classes de cohomologie positives dans les variétés kählériennes compactes." Séminaire Bourbaki 47 (2004-2005): 199-228. <http://eudml.org/doc/252164>.

@article{Debarre2004-2005,
abstract = {Étant donnée une variété kählérienne compacte $X$, on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault $H^\{1,1\}(X,\{\bf R\})\subset H^2(X,\{\bf R\})$ le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type $(1,1)$. Lorsque $X$ est projective, les traces de ces cônes sur l’espace de Néron–Severi $\mathop \{\rm NS\}\nolimits (X)_\{\bf R\}\subset H^\{1,1\}(X,\{\bf R\})$ engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.},
author = {Debarre, Olivier},
journal = {Séminaire Bourbaki},
keywords = {kähler manifold; hyperkähler manifold; ample cone; nef cone; pseudo-effective cone; big cone; Kähler cone; current; singular metric; Zariski decomposition; volume of a line bundle; uniruled variety; mobile curve},
language = {fre},
pages = {199-228},
publisher = {Association des amis de Nicolas Bourbaki, Société mathématique de France},
title = {Classes de cohomologie positives dans les variétés kählériennes compactes},
url = {http://eudml.org/doc/252164},
volume = {47},
year = {2004-2005},
}

TY - JOUR
AU - Debarre, Olivier
TI - Classes de cohomologie positives dans les variétés kählériennes compactes
JO - Séminaire Bourbaki
PY - 2004-2005
PB - Association des amis de Nicolas Bourbaki, Société mathématique de France
VL - 47
SP - 199
EP - 228
AB - Étant donnée une variété kählérienne compacte $X$, on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault $H^{1,1}(X,{\bf R})\subset H^2(X,{\bf R})$ le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type $(1,1)$. Lorsque $X$ est projective, les traces de ces cônes sur l’espace de Néron–Severi $\mathop {\rm NS}\nolimits (X)_{\bf R}\subset H^{1,1}(X,{\bf R})$ engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
LA - fre
KW - kähler manifold; hyperkähler manifold; ample cone; nef cone; pseudo-effective cone; big cone; Kähler cone; current; singular metric; Zariski decomposition; volume of a line bundle; uniruled variety; mobile curve
UR - http://eudml.org/doc/252164
ER -

References

top
  1. [1] T. Bauer, , A. Küronya & T. Szemberg – “Zariski chambers, volumes, and stable base loci”, J. Reine Angew. Math. 576 (2004), p. 209–233. Zbl1055.14007MR2099205
  2. [2] A. Beauville – “Variétés Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom. 18 (1983), no. 4, p. 755–782 (1984). Zbl0537.53056MR730926
  3. [3] P. Biran – “Symplectic packing in dimension 4 ”, Geom. Funct. Anal. 7 (1997), no. 3, p. 420–437. Zbl0892.53022MR1466333
  4. [4] —, “From symplectic packing to algebraic geometry and back”, in European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math., vol. 202, Birkhäuser, Basel, 2001, p. 507–524. Zbl1047.53054MR1909952
  5. [5] S. Boucksom – “Le cône kählérien d’une variété hyperkählérienne”, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 10, p. 935–938. Zbl1068.32014MR1873811
  6. [6] —, “Cônes positifs des variétés complexes compactes”, Thèse, Grenoble, 2002. 
  7. [7] —, “On the volume of a line bundle”, Internat. J. Math. 13 (2002), no. 10, p. 1043–1063. Zbl1101.14008MR1945706
  8. [8] —, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, p. 45–76. Zbl1054.32010MR2050205
  9. [9] S. Boucksom, J.-P. Demailly, M. Păun & T. Peternell – “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, eprint math.AG/0405285. Zbl1267.32017
  10. [10] N. Buchdahl – “On compact Kähler surfaces”, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, p. vii, xi, 287–302. Zbl0926.32025MR1688136
  11. [11] F. Campana & M. Păun – “Une généralisation du théorème de Kobayashi-Ochiai”, eprint math.AG/0506366. Zbl1160.32020
  12. [12] F. Campana & T. Peternell – “Algebraicity of the ample cone of projective varieties”, J. Reine Angew. Math.407 (1990), p. 160–166. Zbl0728.14004MR1048532
  13. [13] S. D. Cutkosky – “Zariski decomposition of divisors on algebraic varieties”, Duke Math. J. 53 (1986), no. 1, p. 149–156. Zbl0604.14002MR835801
  14. [14] S. D. Cutkosky & V. Srinivas – “On a problem of Zariski on dimensions of linear systems”, Ann. of Math. (2) 137 (1993), no. 3, p. 531–559. Zbl0822.14006MR1217347
  15. [15] J.-P. Demailly – “Champs magnétiques et inégalités de Morse pour la d ' ' -cohomologie”, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 4, p. 119–122. Zbl0595.58014MR799607
  16. [16] —, “Singular Hermitian metrics on positive line bundles”, in Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, p. 87–104. Zbl0784.32024MR1178721
  17. [17] —, “Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, p. 285–360. Zbl0919.32014MR1492539
  18. [18] —, “On the geometry of positive cones of projective and Kähler varieties”, in The Fano Conference, Univ. Torino, Turin, 2004, p. 395–422. Zbl1071.14013
  19. [19] J.-P. Demailly & M. Păun – “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2) 159 (2004), no. 3, p. 1247–1274. Zbl1064.32019MR2113021
  20. [20] J.-P. Demailly, T. Peternell & M. a. Schneider – “Compact complex manifolds with numerically effective tangent bundles”, J. Algebraic Geom. 3 (1994), no. 2, p. 295–345. Zbl0827.14027MR1257325
  21. [21] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye & M. Popa – “Asymptotic invariants of base loci”, eprint math.AG/0308116, Ann. Inst. Fourier, à paraître. Zbl1127.14010
  22. [22] T. Fujita – “On Zariski problem”, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, p. 106–110. Zbl0444.14026MR531454
  23. [23] J. E. Goodman – “Affine open subsets of algebraic varieties and ample divisors”, Ann. of Math. (2) 89 (1969), p. 160–183. Zbl0159.50504MR242843
  24. [24] D. Huybrechts – “Compact hyper-Kähler manifolds : basic results”, Invent. Math. 135 (1999), no. 1, p. 63–113. Zbl0953.53031MR1664696
  25. [25] —, “Erratum : “Compact hyper-Kähler manifolds : basic results” [Invent. Math. 135 (1999), no. 1, 63–113 ; MR1664696 (2000a :32039)]”, Invent. Math. 152 (2003), no. 1, p. 209–212. Zbl1029.53058
  26. [26] —, “The Kähler cone of a compact hyperkähler manifold”, Math. Ann. 326 (2003), no. 3, p. 499–513. Zbl1023.14015MR1992275
  27. [27] Y. Kawamata – “The Zariski decomposition of log-canonical divisors”, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, p. 425–433. Zbl0656.14006MR927965
  28. [28] K. Kodaira – “Holomorphic mappings of polydiscs into compact complex manifolds”, J. Differential Geometry 6 (1971/72), p. 33–46. Zbl0227.32008MR301228
  29. [29] A. Kouvidakis – “Divisors on symmetric products of curves”, Trans. Amer. Math. Soc. 337 (1993), no. 1, p. 117–128. Zbl0788.14019MR1149124
  30. [30] S. J. Kovács – “The cone of curves of a K 3 surface”, Math. Ann. 300 (1994), no. 4, p. 681–691. Zbl0813.14026MR1314742
  31. [31] A. Lamari – “Courants kählériens et surfaces compactes”, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, p. vii, x, 263–285. Zbl0926.32026MR1688140
  32. [32] —, “Le cône kählérien d’une surface”, J. Math. Pures Appl. (9) 78 (1999), no. 3, p. 249–263. Zbl0941.32007MR1687094
  33. [33] R. Lazarsfeld – Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Zbl1093.14500MR2095471
  34. [34] —, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Zbl0633.14016MR2095472
  35. [35] D. McDuff & L. Polterovich – “Symplectic packings and algebraic geometry”, Invent. Math. 115 (1994), no. 3, p. 405–434. Zbl0833.53028MR1262938
  36. [36] Y. Miyaoka & S. Mori – “A numerical criterion for uniruledness”, Ann. of Math. (2) 124 (1986), no. 1, p. 65–69. Zbl0606.14030MR847952
  37. [37] M. Nagata – “On the 14 -th problem of Hilbert”, Amer. J. Math.81 (1959), p. 766–772. Zbl0192.13801MR105409
  38. [38] M. Nakamaye – “Stable base loci of linear series”, Math. Ann. 318 (2000), no. 4, p. 837–847. Zbl1063.14008MR1802513
  39. [39] —, “Base loci of linear series are numerically determined”, Trans. Amer. Math. Soc. 355 (2003), no. 2, p. 551–566 (electronic). Zbl1017.14017MR1932713
  40. [40] N. Nakayama – “A counterexample to the Zariski-decomposition conjecture”, Hodge Theory and Algebraic Geometry, Hokkaido Univ., Infinite Analysis Lecture Notes, vol. 19, Kyoto University, 1994, p. 96–101. 
  41. [41] —, “Zariski-decomposition and Abundance”, preprint, 1997. 
  42. [42] G. Pacienza – “On the nef cone of symmetric products of a generic curve”, Amer. J. Math. 125 (2003), no. 5, p. 1117–1135. Zbl1056.14042MR2004430
  43. [43] S. Payne – “Stable base loci, movable curves, and small modifications, for toric varieties”, eprint math.AG/0506622, Math. Zeit., à paraître. Zbl1097.14007
  44. [44] P. R. Thie – “The Lelong number of a point of a complex analytic set”, Math. Ann.172 (1967), p. 269–312. Zbl0158.32804MR214812
  45. [45] O. Zariski – “The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface”, Ann. of Math. (2) 76 (1962), p. 560–615. Zbl0124.37001MR141668

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.