A non-abelian tensor product of Leibniz algebra

Allahtan Victor Gnedbaye

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 4, page 1149-1177
  • ISSN: 0373-0956

Abstract

top
Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to compare the first order Milnor-type Hochschild homology of an associative algebra (non-necessarily commutative) to its classical Hochschild homology.

How to cite

top

Gnedbaye, Allahtan Victor. "A non-abelian tensor product of Leibniz algebra." Annales de l'institut Fourier 49.4 (1999): 1149-1177. <http://eudml.org/doc/75376>.

@article{Gnedbaye1999,
abstract = {Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to compare the first order Milnor-type Hochschild homology of an associative algebra (non-necessarily commutative) to its classical Hochschild homology.},
author = {Gnedbaye, Allahtan Victor},
journal = {Annales de l'institut Fourier},
keywords = {Milnor-type Hochschild homology; crossed module; Leibniz algebra; non-abelian Leibniz (co)homology; non-abelian tensor product},
language = {eng},
number = {4},
pages = {1149-1177},
publisher = {Association des Annales de l'Institut Fourier},
title = {A non-abelian tensor product of Leibniz algebra},
url = {http://eudml.org/doc/75376},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Gnedbaye, Allahtan Victor
TI - A non-abelian tensor product of Leibniz algebra
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1149
EP - 1177
AB - Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to compare the first order Milnor-type Hochschild homology of an associative algebra (non-necessarily commutative) to its classical Hochschild homology.
LA - eng
KW - Milnor-type Hochschild homology; crossed module; Leibniz algebra; non-abelian Leibniz (co)homology; non-abelian tensor product
UR - http://eudml.org/doc/75376
ER -

References

top
  1. [1] J.-M. CASAS & M. LADRA, Perfect crossed modules in Lie algebras, Comm. Alg., 23(5) (1995), 1625-1644. Zbl0860.17032MR96e:17048
  2. [2] Ch. CUVIER, Algèbres de Leibnitz: définitions, propriétés, Ann. Ecole Norm. Sup., (4) 27 (1994), 1-45. Zbl0821.17024
  3. [3] G.J. ELLIS, A non-abelian tensor product of Lie algebras, Glasgow Math. J., 33 (1991), 101-120. Zbl0724.17016MR92g:18010
  4. [4] A.V. GNEDBAYE, Third homology groups of universal central extensions of a Lie algebra, Afrika Matematika (to appear), Série 3, 10 (1998). Zbl1054.17003
  5. [5] D. GUIN, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive, Ann. Inst. Fourier, Grenoble, 45-1 (1995), 93-118. Zbl0818.17022MR96e:18004
  6. [6] J.-L. LODAY, Cyclic homology, Grund. math. Wiss., Springer-Verlag, 301, 1992. Zbl0780.18009MR94a:19004
  7. [7] J.-L. LODAY, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Math., 39 (1993), 269-293. Zbl0806.55009MR95a:19004
  8. [8] J.-L. LODAY & T. PIRASHVILI, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Annal., 296 (1993), 139-158. Zbl0821.17022MR94j:17003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.