Direct images in non-archimedean Arakelov theory

Henri Gillet; Christophe Soulé

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 2, page 363-399
  • ISSN: 0373-0956

Abstract

top
We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.

How to cite

top

Gillet, Henri, and Soulé, Christophe. "Direct images in non-archimedean Arakelov theory." Annales de l'institut Fourier 50.2 (2000): 363-399. <http://eudml.org/doc/75422>.

@article{Gillet2000,
abstract = {We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.},
author = {Gillet, Henri, Soulé, Christophe},
journal = {Annales de l'institut Fourier},
keywords = {Arakelov theory; Riemann-Roch-Grothendieck theorem; arithmetic Chow groups; direct image; intersection theory},
language = {eng},
number = {2},
pages = {363-399},
publisher = {Association des Annales de l'Institut Fourier},
title = {Direct images in non-archimedean Arakelov theory},
url = {http://eudml.org/doc/75422},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Gillet, Henri
AU - Soulé, Christophe
TI - Direct images in non-archimedean Arakelov theory
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 363
EP - 399
AB - We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.
LA - eng
KW - Arakelov theory; Riemann-Roch-Grothendieck theorem; arithmetic Chow groups; direct image; intersection theory
UR - http://eudml.org/doc/75422
ER -

References

top
  1. [AKMW] D. ABRAMOVICH, K. KARU, K. MATSUKI, J. WLODARCZYK, Torification and factorization of birational maps, preprint, 1999, math.AG/9904135. Zbl1032.14003
  2. [BFM] P. BAUM, W. FULTON, R. MACPHERSON, Riemann-Roch for Singular Varieties, Pub. Math. I.H.E.S., 45 (1975), 253-290. Zbl0332.14003MR54 #317
  3. [BK] J.-M. BISMUT, K. KOEHLER, Higher analytic torsion forms for direct images and anomaly formulas, J. Algebr. Geom., 1, n° 4 (1992), 647-684. Zbl0784.32023MR94a:58209
  4. [BGS] S. BLOCH, H. GILLET, C. SOULÉ, Non-archimedean Arakelov theory, Journal of Algebraic Geometry, 4 (1995), 427-485. Zbl0866.14011MR96g:14019
  5. [B] J. BURGOS, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebr. Geom., 6, n° 2 (1997), 335-377. Zbl0922.14002MR99d:14015
  6. [D] P. DELIGNE, Le déterminant de la cohomologie, in : Current trends in Arithmetical Algebraic Geometry, K. A. Ribet ed., Contemporary Math., 67 (1987), 93-178. Zbl0629.14008MR89b:32038
  7. [F] W. FULTON, Intersection theory, Ergebnisse der Math., 3, Folge 2 Band 2, Springer-Verlag, Berlin-Heidelberg-New York, 1984. Zbl0541.14005MR85k:14004
  8. [Fr] J. FRANKE, Riemann-Roch in functorial form, preprint, 78 pp., 1992. 
  9. [GS1] H. GILLET, C. SOULÉ, Arithmetic Intersection Theory, Publications Math. IHES, 72 (1990), 94-174. Zbl0741.14012MR92d:14016
  10. [GS2] H. GILLET, C. SOULÉ, Characteristic classes for algebraic vector bundles with hermitian metric, Annals of Math., 131 (1990), 163-203. Zbl0715.14018MR91m:14032a
  11. [GS3] H. GILLET, C. SOULÉ, Analytic torsion and the Arithmetic Todd genus, Topology, 30, 1 (1991), 21-54. Zbl0787.14005MR92d:14015
  12. [GS4] H. GILLET, C. SOULÉ, An arithmetic Riemann-Roch theorem, Inventiones Math., 110 (1992), 474-543. Zbl0777.14008MR94f:14019
  13. [H] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  14. [KM] F. F. KNUDSEN, D. MUMFORD, The projectivity of the moduli space of stable curves, I: Preliminaries on “det” and “div”, Math. Scand., 39 (1976), 19-55. Zbl0343.14008MR55 #10465
  15. [M] H. MATSUMURA, Commutative ring theory, Transl. from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989. Zbl0666.13002
  16. [Q] D. QUILLEN, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl., (1985), 31-34. Zbl0603.32016MR86g:32035
  17. [RG] M. RAYNAUD, L. GRUSON, Critères de platitude et de projectivité, Inv. Math., 13 (1971), 1-89. Zbl0227.14010
  18. [S] T. SAITO, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. Journal, 57 (1988), 151-173. Zbl0657.14017MR89f:14024
  19. [SGA4] M. ARTIN, A. GROTHENDIECK, J.-L. VERDIER, P. DELIGNE, B. SAINT-DONAT, Séminaire de géométrie algébrique du Bois-Marie 1963-1964, Théorie des topos et cohomologie étale des schémas, SGA 4, Tome 3, Exposés IX a XIX, Lecture Notes in Mathematics, Berlin-Heidelberg-New York, Springer-Verlag, 305 (1973). Zbl0245.00002MR50 #7132
  20. [SGA6] P. BERTHELOT, A. GROTHENDIECK, L. ILLUSIE, Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6, Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Berlin-Heidelberg-New York, Springer-Verlag, 225 (1971). Zbl0218.14001
  21. [W] J. WLODARCZYK, Combinatorial structures on toroidal varieties and a proof of the weak factorization theorem preprint, 1999, math.AG/9904076. 
  22. [Z] J. ZHA, A general Arithmetic Riemann-Roch theorem, PHD thesis, Chicago University, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.