Direct images in non-archimedean Arakelov theory

Henri Gillet; Christophe Soulé

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 2, page 363-399
  • ISSN: 0373-0956

Abstract

top
We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.

How to cite

top

Gillet, Henri, and Soulé, Christophe. "Direct images in non-archimedean Arakelov theory." Annales de l'institut Fourier 50.2 (2000): 363-399. <http://eudml.org/doc/75422>.

@article{Gillet2000,
abstract = {We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.},
author = {Gillet, Henri, Soulé, Christophe},
journal = {Annales de l'institut Fourier},
keywords = {Arakelov theory; Riemann-Roch-Grothendieck theorem; arithmetic Chow groups; direct image; intersection theory},
language = {eng},
number = {2},
pages = {363-399},
publisher = {Association des Annales de l'Institut Fourier},
title = {Direct images in non-archimedean Arakelov theory},
url = {http://eudml.org/doc/75422},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Gillet, Henri
AU - Soulé, Christophe
TI - Direct images in non-archimedean Arakelov theory
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 2
SP - 363
EP - 399
AB - We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.
LA - eng
KW - Arakelov theory; Riemann-Roch-Grothendieck theorem; arithmetic Chow groups; direct image; intersection theory
UR - http://eudml.org/doc/75422
ER -

References

top
  1. [AKMW] D. ABRAMOVICH, K. KARU, K. MATSUKI, J. WLODARCZYK, Torification and factorization of birational maps, preprint, 1999, math.AG/9904135. Zbl1032.14003
  2. [BFM] P. BAUM, W. FULTON, R. MACPHERSON, Riemann-Roch for Singular Varieties, Pub. Math. I.H.E.S., 45 (1975), 253-290. Zbl0332.14003MR54 #317
  3. [BK] J.-M. BISMUT, K. KOEHLER, Higher analytic torsion forms for direct images and anomaly formulas, J. Algebr. Geom., 1, n° 4 (1992), 647-684. Zbl0784.32023MR94a:58209
  4. [BGS] S. BLOCH, H. GILLET, C. SOULÉ, Non-archimedean Arakelov theory, Journal of Algebraic Geometry, 4 (1995), 427-485. Zbl0866.14011MR96g:14019
  5. [B] J. BURGOS, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebr. Geom., 6, n° 2 (1997), 335-377. Zbl0922.14002MR99d:14015
  6. [D] P. DELIGNE, Le déterminant de la cohomologie, in : Current trends in Arithmetical Algebraic Geometry, K. A. Ribet ed., Contemporary Math., 67 (1987), 93-178. Zbl0629.14008MR89b:32038
  7. [F] W. FULTON, Intersection theory, Ergebnisse der Math., 3, Folge 2 Band 2, Springer-Verlag, Berlin-Heidelberg-New York, 1984. Zbl0541.14005MR85k:14004
  8. [Fr] J. FRANKE, Riemann-Roch in functorial form, preprint, 78 pp., 1992. 
  9. [GS1] H. GILLET, C. SOULÉ, Arithmetic Intersection Theory, Publications Math. IHES, 72 (1990), 94-174. Zbl0741.14012MR92d:14016
  10. [GS2] H. GILLET, C. SOULÉ, Characteristic classes for algebraic vector bundles with hermitian metric, Annals of Math., 131 (1990), 163-203. Zbl0715.14018MR91m:14032a
  11. [GS3] H. GILLET, C. SOULÉ, Analytic torsion and the Arithmetic Todd genus, Topology, 30, 1 (1991), 21-54. Zbl0787.14005MR92d:14015
  12. [GS4] H. GILLET, C. SOULÉ, An arithmetic Riemann-Roch theorem, Inventiones Math., 110 (1992), 474-543. Zbl0777.14008MR94f:14019
  13. [H] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), 109-326. Zbl0122.38603MR33 #7333
  14. [KM] F. F. KNUDSEN, D. MUMFORD, The projectivity of the moduli space of stable curves, I: Preliminaries on “det” and “div”, Math. Scand., 39 (1976), 19-55. Zbl0343.14008MR55 #10465
  15. [M] H. MATSUMURA, Commutative ring theory, Transl. from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989. Zbl0666.13002
  16. [Q] D. QUILLEN, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl., (1985), 31-34. Zbl0603.32016MR86g:32035
  17. [RG] M. RAYNAUD, L. GRUSON, Critères de platitude et de projectivité, Inv. Math., 13 (1971), 1-89. Zbl0227.14010
  18. [S] T. SAITO, Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. Journal, 57 (1988), 151-173. Zbl0657.14017MR89f:14024
  19. [SGA4] M. ARTIN, A. GROTHENDIECK, J.-L. VERDIER, P. DELIGNE, B. SAINT-DONAT, Séminaire de géométrie algébrique du Bois-Marie 1963-1964, Théorie des topos et cohomologie étale des schémas, SGA 4, Tome 3, Exposés IX a XIX, Lecture Notes in Mathematics, Berlin-Heidelberg-New York, Springer-Verlag, 305 (1973). Zbl0245.00002MR50 #7132
  20. [SGA6] P. BERTHELOT, A. GROTHENDIECK, L. ILLUSIE, Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6, Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Berlin-Heidelberg-New York, Springer-Verlag, 225 (1971). Zbl0218.14001
  21. [W] J. WLODARCZYK, Combinatorial structures on toroidal varieties and a proof of the weak factorization theorem preprint, 1999, math.AG/9904076. 
  22. [Z] J. ZHA, A general Arithmetic Riemann-Roch theorem, PHD thesis, Chicago University, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.