An arithmetic Riemann-Roch theorem in higher degrees
Henri Gillet, Damian Rössler, Christophe Soulé (2008)
Annales de l’institut Fourier
Similarity:
We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Henri Gillet, Damian Rössler, Christophe Soulé (2008)
Annales de l’institut Fourier
Similarity:
We prove an analog in Arakelov geometry of the Grothendieck-Riemann-Roch theorem.
Paul Baum, William Fulton, Robert Macpherson (1975)
Publications Mathématiques de l'IHÉS
Similarity:
Christopher Deninger, Annette Werner (2005)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Yves Laszlo (1997)
Bulletin de la Société Mathématique de France
Similarity:
Birger Iversen (1976)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Steven L. Kleiman (1969)
Publications Mathématiques de l'IHÉS
Similarity:
Walter Gubler (2003)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Classical results of Weil, Néron and Tate are generalized to local heights of subvarieties with respect to hermitian pseudo-divisors. The local heights are well-defined if the intersection of supports is empty. In the archimedean case, the metrics are hermitian and the local heights are defined by a refined version of the -product of Gillet-Soulé developped on compact varieties without assuming regularity. In the non-archimedean case, the local heights are intersection numbers using...