The finite subgroups of maximal arithmetic kleinian groups

Ted Chinburg; Eduardo Friedman

Annales de l'institut Fourier (2000)

  • Volume: 50, Issue: 6, page 1765-1798
  • ISSN: 0373-0956

Abstract

top
Given a maximal arithmetic Kleinian group Γ PGL ( 2 , ) , we compute its finite subgroups in terms of the arithmetic data associated to Γ by Borel. This has applications to the study of arithmetic hyperbolic 3-manifolds.

How to cite

top

Chinburg, Ted, and Friedman, Eduardo. "The finite subgroups of maximal arithmetic kleinian groups." Annales de l'institut Fourier 50.6 (2000): 1765-1798. <http://eudml.org/doc/75471>.

@article{Chinburg2000,
abstract = {Given a maximal arithmetic Kleinian group $\Gamma \subset \{\rm PGL\}(2,\{\Bbb C\})$, we compute its finite subgroups in terms of the arithmetic data associated to $\Gamma $ by Borel. This has applications to the study of arithmetic hyperbolic 3-manifolds.},
author = {Chinburg, Ted, Friedman, Eduardo},
journal = {Annales de l'institut Fourier},
keywords = {finite subgroups; Kleinian groups; minimal arithmetic hyperbolic 3-orbifolds; quaternion algebras over number fields},
language = {eng},
number = {6},
pages = {1765-1798},
publisher = {Association des Annales de l'Institut Fourier},
title = {The finite subgroups of maximal arithmetic kleinian groups},
url = {http://eudml.org/doc/75471},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Chinburg, Ted
AU - Friedman, Eduardo
TI - The finite subgroups of maximal arithmetic kleinian groups
JO - Annales de l'institut Fourier
PY - 2000
PB - Association des Annales de l'Institut Fourier
VL - 50
IS - 6
SP - 1765
EP - 1798
AB - Given a maximal arithmetic Kleinian group $\Gamma \subset {\rm PGL}(2,{\Bbb C})$, we compute its finite subgroups in terms of the arithmetic data associated to $\Gamma $ by Borel. This has applications to the study of arithmetic hyperbolic 3-manifolds.
LA - eng
KW - finite subgroups; Kleinian groups; minimal arithmetic hyperbolic 3-orbifolds; quaternion algebras over number fields
UR - http://eudml.org/doc/75471
ER -

References

top
  1. [1] A. BOREL, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa, 8 (1981), 1-33. Also in Borel's Oeuvres, Berlin, Springer, 1983. Zbl0473.57003MR82j:22008
  2. [2] T. CHINBURG and E. FRIEDMAN, An embedding theorem for quaternion algebras J. London Math. Soc., (2) 60 (1999), 33-44. Zbl0940.11053MR2000j:11173
  3. [3] T. CHINBURG and E. FRIEDMAN, The smallest arithmetic hyperbolic 3-orbifold, Invent. Math., 86 (1986), 507-527. Zbl0643.57011MR88a:22022
  4. [4] T. CHINBURG, E. FRIEDMAN, K. JONES and A. W. REID, The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa (to appear). Zbl1008.11015
  5. [5] M. DEURING, Algebren, Springer Verlag, Berlin, 1935. Zbl0011.19801JFM61.0118.01
  6. [6] W. FEIT, Exceptional subgroups of GL2, Appendix to chapter XI of Introduction to Modular Forms by S. Lang, Berlin, Springer Verlag, 1976. 
  7. [7] F. W. GEHRING and G. J. MARTIN, 6-torsion and hyperbolic volume, Proc. Amer. Math. Soc., 117 (1993), 727-735. Zbl0790.30032MR93d:30056
  8. [8] F. W. GEHRING, C. MACLACHLAN, G. J. MARTIN and A. W. REID, Arithmeticity, discreteness and volume, Trans. Amer. Math. Soc., 349 (1997), 3611-3643. Zbl0889.30031
  9. [9] K. N. JONES and A. W. REID, Minimal index torsion-free subgroups of Kleinian groups, Math. Ann., 310 (1998), 235-250. Zbl0890.57016MR99a:57010
  10. [10] J. MARTINET, Petits discriminants des corps de nombres. In J. Armitage, editor, Number Theory Days, 1980 (Exeter 1980). London Math. Soc. Lecture Notes Ser. 56, Cambridge: Cambridge Univ. Press, 1982. Zbl0491.12005
  11. [11] J.-P. SERRE, Trees, Springer Verlag, Berlin, 1980. Zbl0548.20018
  12. [12] L. WASHINGTON, Introduction to Cyclotomic Fields, Springer Verlag, Berlin, 1982. Zbl0484.12001MR85g:11001
  13. [13] M.-F. VIGNÉRAS, Arithmétique des algèbres de Quaternions, Lecture Notes in Math. 800, Springer Verlag, Berlin, 1980. Zbl0422.12008MR82i:12016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.