An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle

J. Carminati; R. G. McLenaghan

Annales de l'I.H.P. Physique théorique (1986)

  • Volume: 44, Issue: 2, page 115-153
  • ISSN: 0246-0211

How to cite

top

Carminati, J., and McLenaghan, R. G.. "An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle." Annales de l'I.H.P. Physique théorique 44.2 (1986): 115-153. <http://eudml.org/doc/76314>.

@article{Carminati1986,
author = {Carminati, J., McLenaghan, R. G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {linear hyperbolic partial equation; Huygens' principle; Cauchy problem; conformally invariant wave equation; Weyl conformal curvature tensor; Maxwell's equations; Weyl's neutrino equation},
language = {eng},
number = {2},
pages = {115-153},
publisher = {Gauthier-Villars},
title = {An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle},
url = {http://eudml.org/doc/76314},
volume = {44},
year = {1986},
}

TY - JOUR
AU - Carminati, J.
AU - McLenaghan, R. G.
TI - An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle
JO - Annales de l'I.H.P. Physique théorique
PY - 1986
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 115
EP - 153
LA - eng
KW - linear hyperbolic partial equation; Huygens' principle; Cauchy problem; conformally invariant wave equation; Weyl conformal curvature tensor; Maxwell's equations; Weyl's neutrino equation
UR - http://eudml.org/doc/76314
ER -

References

top
  1. [1] L. Asgeirsson, Some hints on Huygens' principle and Hadamard's conjecture. Comm. Pure Appl. Math., t. 9, 1956, p. 307-326. Zbl0074.31101MR82034
  2. [2] R. Bach, Zur Weylschen Relativitats theorie. Math. Zeitscher, t. 9, 1921, p. 110-135. Zbl48.1035.01MR1544454JFM48.1035.01
  3. [3] Y. Bruhat, Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires. Acta Math., t. 88, 1952, p. 141-225. Zbl0049.19201MR53338
  4. [4] J. Carminati and R.G. Mclenaghan, Some new results on the validity of Huygens' principle for the scalar wave equation on a curved space-time. Article in Gravitation, Geometry and Relativistic Physics, Proceedings of the Journées Relativistes 1984, Aussois, France, edited by Laboratoire Gravitation et Cosmologie Relativistes. Institut Henri Poincaré, Lecture Notes in Physics, t. 212, Springer–Verlag, Berlin, 1984. Zbl0557.53046MR780225
  5. [5] J. Carminati and R.G. Mclenaghan, Determination of all Petrov type-N space–times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Phys. Lett., t. 105 A, 1984, p. 351-354. Zbl0694.35074MR766032
  6. [6] R. Courant and D. Hilbert, Methods of mathematical physics, t. 2, Interscience, New York, 1962. Zbl0099.29504
  7. [7] R. Debever, Le rayonnement gravitationnel, le tenseur de Riemann en relativité générale. Cah. Phys., t. 168-169, 1964, p. 303-349. MR187877
  8. [8] A. Douglis, The problem of Cauchy for linear hyperbolic equations of second order. Comm. Pure Appl. Math., t. 7, 1954, p. 271-295. Zbl0059.08801MR62931
  9. [9] J. Ehlers and K. Kundt, Exact solutions of the gravitational Field equations. Article in Gravitation an introduction to current research; edited by L. Witten, Wiley, New York, 1964. 
  10. [10] F.G. Friedlander, The wave equation in a curved space-time. Cambridge University Press, Cambridge, 1975. Zbl0316.53021MR460898
  11. [11] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus. S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur. K., t. 100, 1952, p. 1-43. Zbl0046.32201MR50136
  12. [12] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen. Arch. Rational Mech. Anal., t. 18, 1965, p. 103-106. Zbl0125.05404MR174865
  13. [13] P. Günther, Einige Sätze uber huygenssche Differentialgleichungen. Wiss. Zeitschr. Karl Marx Univ., Math.-natu. Reihe Leipzig, t. 14, 1965, p. 497-507. Zbl0173.12203MR198012
  14. [14] P. Günther and V. Wünsch, Maxwellsche Gleichungen und Huygensshes Prinzip I. Math. Nach., t. 63, 1974, p. 97-121. Zbl0288.35042MR363377
  15. [15] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
  16. [16] J. Hadamard, The problem of diffusion of waves. Ann. of Math., t. 43, 1942, p. 510-522. Zbl0063.01841MR6809
  17. [17] E. Hölder, Poissonsche Wellenformel in nicht euclidischen Raumen. Ber. Verh. Sachs. Akad. Wiss. Leipzig, t. 99, 1938, p. 53-66. Zbl0019.26101JFM64.1174.02
  18. [18] H.P. Künzle, Maxwell Fields satisfying Huygens' principle. Proc. Cambridge Philos. Soc., t. 64, 1968, p. 779-785. 
  19. [19] J. Leray, Hyperbolic Partial Differential Equations. Mimeographed Notes, Institute of Advanced Study, Princeton. 
  20. [20] M. Mathisson, Eine Lösungsmethode fur Differentialgleichungen vom normalen hyperbolischen Typus. Math. Ann., t. 107, 1932, p. 400-419. Zbl58.1561.01JFM58.1561.01
  21. [21] M. Mathisson, Le problème de M. Hadamard relatif à la diffusion des ondes. Acta Math., t. 71, 1939, p. 249-282. Zbl0022.22802MR728
  22. [22] R.G. Mclenaghan, An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambridge Philos. Soc., t. 65, 1969, p. 139-155. Zbl0182.13403MR234700
  23. [23] R.G. Mclenaghan and J. Leroy, Complex recurrent space-times. Proc. Roy. Soc. London, t. A 327, 1972, p. 229-249. Zbl0243.53030MR309517
  24. [24] R.G. Mclenaghan, On the validity of Huygen's principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions. Ann. Inst. Henri Poincaré, t. A 20, 1974, p. 153-188. Zbl0287.35058MR361452
  25. [25] R.G. Mclenaghan, Huygens' principle. Ann. Inst. Henri Poincaré, t. A 27, 1982, p. 211-236. Zbl0528.35057MR694586
  26. [26] E.T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., t. 3, 1962, p. 566-578. Zbl0108.40905MR141500
  27. [27] B. Rinke and V. Wünsch, Zum Huygenschen Prinzip bei der skalaren Wellengleichung. Beitr. zur Analysis, t. 18, 1981, p. 43-75. Zbl0501.53010MR650138
  28. [28] R. Penrose, A spinor approach to general relativity. Ann. Physics, t. 10, 1960, p. 171- 201. Zbl0091.21404MR115765
  29. [29] A.Z. Petrov, Einstein-Raume. Akademie Verlag, Berlin, 1964. Zbl0114.21003MR162594
  30. [30] F.A.E. Pirani, Introduction to gravitational radiation theory. Article in Lectures on General Relativity, edited by S. Deser and W. Ford, Brandeis Summer Institute in Theoretical Physics, t. 1, 1964, Prentice-Hall, New York. 
  31. [31] R. Schimming, Zur Gültigkeit des huygensschen Prinzips bei einer speziellen Metrik. Z. A. M. M., t. 51, 1971, p. 201-208. Zbl0221.35011MR290313
  32. [32] S.L. Sobolev, Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. (N. S.), t. 1, 1936, p. 39-70. Zbl0014.05902JFM62.0568.01
  33. [33] K.L. Stellmacher, Ein Beispiel einer Huygensschen Differentialgleichung. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., 11, t. 10, 1953, p. 133-138. Zbl0052.09901MR60695
  34. [34] K.L. Stellmacher, Eine Klasse Huygenscher Differentialgleichungen und ihre Integration. Math. Ann., t. 130, 1955, p. 219-233. Zbl0134.31101MR73831
  35. [35] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen. Math. Nachr., t. 47, 1970, p. 131-154. Zbl0211.40803MR298221
  36. [36] V. Wünsch, Maxwellsche Gleichungen und Huygensches Prinzip II. Math. Nach., t. 73, 1976, p. 19-36. Zbl0288.35043MR426807
  37. [37] V. Wünsch, Uber eine Klasse Konforminvarianter Tensoren. Math. Nach., t. 73, 1976, p. 37-58. Zbl0287.53014MR433342
  38. [38] V. Wünsch, Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I. Beitr. zur Analysis, t. 12, 1978, p. 47-76. Zbl0448.58022MR507097
  39. [39] V. Wünsch, Cauchy-Problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichunger II. Beitr. zur Analysis, t. 13, 1979, p. 147-177. Zbl0467.35067MR536225
  40. [40] V. Wünsch, Über ein Problem von McLenaghan. Wiss. Zeit Pädagog. Hochsch. Dr. Theodor Neubaurer. Math.-Natur., t. 20, 1984, p. 123-127. Zbl0619.53046

Citations in EuDML Documents

top
  1. J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. — Part II : Petrov type D space-times
  2. J. Carminati, R. G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
  3. R. G. McLenaghan, G. C. Williams, An explicit determination of the Petrov type D spacetimes on which Weyl's neutrino equation and Maxwell's equations satisfy Huygens' principle
  4. R. G. McLenaghan, F. D. Sasse, Nonexistence of Petrov type III space-times on which Weyl's neutrino equation or Maxwell's equations satisfy Huygens' principle
  5. J. Carminati, S. R. Czapor, R. G. McLenaghan, G. C. Williams, Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
  6. R. G. McLenaghan, T. F. Walton, An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times
  7. S. R. Czapor, R. G. McLenaghan, F. D. Sasse, Complete solution of Hadamard's problem for the scalar wave equation on Petrov type III space-times
  8. W. G. Anderson, R. G. McLenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.