On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition

W. G. Anderson; R. G. McLenaghan

Annales de l'I.H.P. Physique théorique (1994)

  • Volume: 60, Issue: 4, page 373-432
  • ISSN: 0246-0211

How to cite

top

Anderson, W. G., and McLenaghan, R. G.. "On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition." Annales de l'I.H.P. Physique théorique 60.4 (1994): 373-432. <http://eudml.org/doc/76640>.

@article{Anderson1994,
author = {Anderson, W. G., McLenaghan, R. G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Huygens' principle; four independent variables},
language = {eng},
number = {4},
pages = {373-432},
publisher = {Gauthier-Villars},
title = {On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition},
url = {http://eudml.org/doc/76640},
volume = {60},
year = {1994},
}

TY - JOUR
AU - Anderson, W. G.
AU - McLenaghan, R. G.
TI - On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition
JO - Annales de l'I.H.P. Physique théorique
PY - 1994
PB - Gauthier-Villars
VL - 60
IS - 4
SP - 373
EP - 432
LA - eng
KW - Huygens' principle; four independent variables
UR - http://eudml.org/doc/76640
ER -

References

top
  1. [1] W.G. Anderson, Contributions to the Study of Huygens' Principle for the Non-self-adjoint Scalar Wave Equation on Curved Space-time, M. Math. Thesis (unpublished), University of Waterloo, 1991. 
  2. [2] W.G. Anderson, R.G. McLenaghan and T.F. Walton, An Explicit Determination of the Non-Self-Adjoint Wave Equations on Curved Space-Time that Satisfy Huygens' Principle. Part II: Petrov Type III Background Space-Times, submitted to Ann. Inst. Henri Poincaré, Phys. Théor. Zbl0885.35062
  3. [3] W.G. Anderson and R.G. McLenaghan, On Huygens' Principle for Relativistic Wave Equations, C. R. Math. Rep. Acad. Sci. CanadaXV, 1993, p. 41. Zbl0765.35056MR1214215
  4. [4] L. Asgeirsson, Some Hints on Huygens' Principle and Hadamard's Conjecture, Comm. Pure Appl. Math., 9, 1956, p. 307. Zbl0074.31101MR82034
  5. [5] J. Carminati, S.R. Czapor, R.G. McLenaghan and G.C. Williams, Consequences of the Validity of Huygens' Principle for the Conformally Invariant Scalar Wave Equation, Weyl's Neutrino Equation and Maxwell's Equations on Petrov Type II Space-Times, Ann. Inst. Henri Poincaré, Phys. Théor., 54, 1991, p. 9. Zbl0729.35075
  6. [6] J. Carminati and R.G. McLenaghan, An Explicit Determination of the Petrov Type N Space-times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle, Ann. Inst. Henri Poincaré, Phys. Théor., 44, 1986, p. 115. Zbl0595.35067MR839281
  7. [7] J. Carminati and R.G. McLenaghan, An Explicit Determination of the Space-times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle. Part II: Petrov Type D Space-times, Ann. Inst. Henri Poincaré, Phys. Théor., 47, 1987, p. 337. Zbl0694.35074MR933681
  8. [8] J. Carminati and R.G. McLenaghan, An Explicit Determination of the Space-times on which the Conformally Invariant Scalar Wave Equation Satisfies Huygens' Principle. Part III: Petrov Type III Space-times, Ann. Inst. Henri Poincaré, Phys. Théor., 48, 1988, p. 77. Zbl0706.35131MR947160
  9. [9] J. Ehlers and K. Kundt, Exact Solutions of the Gravitational Field Equations, Chapter 2 of Gravitation an Introduction to Current Research, L. Witten editor, John Wiley and Sons, Toronto, 1962. MR143624
  10. [10] F.G. Friedlander, The Wave Equation on a Curved Space-Time, Cambridge University Press, London, 1976. Zbl0316.53021MR460898
  11. [11] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus, S.-B. Sachs Akad. Wiss. Leipzig Math.-Natur. K., 100, 1952, p. 1. Zbl0046.32201MR50136
  12. [12] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differential-gleichungen mit vier unabhängigen Variablen, Arch. Ration. Mech. Anal., 18, 1965, p. 103. Zbl0125.05404MR174865
  13. [13] P. Günther and V. Wünsch, Maxwellsche Gleichungen und Huygenssches Prinzip I, Math. Nach., 63, 1974, p. 97. Zbl0288.35042MR363377
  14. [14] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
  15. [15] J. Hadamard, The problem of diffusion of waves, Ann. Math., 43, 1942, p. 510. Zbl0063.01841MR6809
  16. [16] G. Herglotz, Uber die Bestimmung eines Linienelementes in normal Koordinaten aus dem Riemannschen Krümmgstensor, Math. Ann., 93, 1925, p. 46. MR1512221JFM50.0492.07
  17. [17] D. Lovelock, The Lanczos identity and its generalizations, Atti. Accad. Naz. Lincei, 42, 1967, p. 187. Zbl0194.22802MR216427
  18. [18] M. Mathisson, Le problème de M. Hadamard relatif à la diffusion des ondes, Acad. Math., 71, 1939, p. 249. Zbl0022.22802MR728
  19. [19] R.G. McLenaghan, An Explicit Determination of the Empty Space-times on which the Wave Equation Satisfies Huygens' Principle, Proc. Cambridge Philos. Soc., 65, 1969, p. 139. Zbl0182.13403MR234700
  20. [20] R.G. McLenaghan, On the Validity of Huygen's Principle for Second Order Partial Differential Equations with four Independent Variables, Part I: Derivation of Necessary Conditions, Ann. Inst. Henri Poincaré, A20, 1974, p. 153. Zbl0287.35058MR361452
  21. [21] R.G. McLenaghan and T.F. Walton, An Explicit Determination of the Non-self-adjoint Wave Equations on Curved Space-time that Satisfy Huygens' Principle. Part I: Petrov Type N Background Space-Times, Ann. Inst. Henri Poincaré, Phys. Théor., 48, 1988, p. 267. Zbl0645.53047MR950268
  22. [22] R.G. McLenaghan and G.C. Williams, An Explicit Determination of the Petrov Type D Space-Times on which Weyl's Neutrino Equation and the Maxwell's Equations Satisfy Huygens' Principle, Ann. Inst. Henri Poincaré, Phys. Théor., 53, 1990, p. 217. Zbl0709.53053
  23. [23] B. Rinke and V. Wünsch, Zum Huygensschen Prinzip bei der skalaren Wellengleichung, Beitr. zur Analysis, 18, 1981, p. 43. Zbl0501.53010MR650138
  24. [24] K.L. Stellmacher, Ein Beispel einer Huygensschen Differentialgleichung, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., II, 10, 1953, p. 133. Zbl0052.09901MR60695
  25. [25] K.L. Stellmacher, Eine Klasse von Huygensschen Differentialgleichungen und ihre Integration, Math. Ann., 130, 1955, p. 219. Zbl0134.31101MR73831
  26. [26] V. Wünsch, Über selbstadjungiete Huygenssche Differentialglechungen mit vier unabhängen Variablen, Math. Nach., 47, 1970, p. 131. Zbl0211.40803MR298221
  27. [27] V. Wünsch, Maxwellsche Gleichungen und Huygensches Prinzip II. Math. Nach., 73, 1976, p. 19. Zbl0288.35043MR426807
  28. [28] V. Wünsch, Cauchy-Problem und Huygenssches Prinzip bei einigen-Klassen spinorieller Feldgleichungen II, Beitr. zur Analysis, 13, 1979, p. 147. Zbl0467.35067MR536225
  29. [29] V. Wünsch, Huygens' Principle on Petrov Type D Space-times, Ann. Physik., 46, 1989, p. 593. Zbl0697.53027MR1051239

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.