An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times

J. Carminati; R. G. McLenaghan

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 1, page 77-96
  • ISSN: 0246-0211

How to cite

top

Carminati, J., and McLenaghan, R. G.. "An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times." Annales de l'I.H.P. Physique théorique 48.1 (1988): 77-96. <http://eudml.org/doc/76391>.

@article{Carminati1988,
author = {Carminati, J., McLenaghan, R. G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Huygens' principle; conformally invariant scalar wave equation; Maxwell's equations; Weyl's neutrino equation},
language = {eng},
number = {1},
pages = {77-96},
publisher = {Gauthier-Villars},
title = {An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times},
url = {http://eudml.org/doc/76391},
volume = {48},
year = {1988},
}

TY - JOUR
AU - Carminati, J.
AU - McLenaghan, R. G.
TI - An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III : Petrov type III space-times
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 77
EP - 96
LA - eng
KW - Huygens' principle; conformally invariant scalar wave equation; Maxwell's equations; Weyl's neutrino equation
UR - http://eudml.org/doc/76391
ER -

References

top
  1. [1] B. Buchberger, A Survey on the Method of Gröbner Bases for Solving Problems in Connection with Systems of Multi-variate Polynomials. Article in The Second RIKEN International Symposium on Symbolic and Algebraic Computation by Computers, edited by N. Inada and T. Soma. World Scientific Publishing Co., Singapore, 1984, p. 69-83. Zbl0645.68057MR835951
  2. [2] J. Carminati and R.G. Mclenaghan, Some new results on the validity of Huygens' principle for the scalar wave equation on a curved space-time. Article in Gravitation, Geometry and Relativistic Physics, Proceedings of the Journées Relativistes1984, Aussois, France, edited by Laboratoire Gravitation et Cosmologie Relativistes. Institut Henri Poincaré;. Lectures Notes in Physics, t. 212, Springer-Verlag, Berlin, 1984. Zbl0557.53046MR780225
  3. [3] J. Carminati and R.G. Mclenaghan, Determination of all Petrov type N spacetimes on which the conformally invariant scalar wave equation satisfies Huygens' principle. Phys. Lett., t. 105 A, 1984, p. 351-354. Zbl0694.35074MR766032
  4. [4] J. Carminati and R.G. Mclenaghan, An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Ann. Inst. Henri Poincaré, Phys. Théor., t. 44, 1986, p. 115-153. Zbl0595.35067MR839281
  5. [5] J. Carminati and R.G. Mclenaghan, The validity of Huygens' principle for the conformally invariant scalar wave equation, Maxwell's equations and Weyl's neutrino equation on Petrov type D and type III space-times. Phys. Lett., t. 118 A, 1986, p. 322-324. MR867005
  6. [6] J. Carminati and R.G. Mclenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part II: Petrov type D space-times. Ann. Inst. Henri Poincaré, Phys. Théor., in press. Zbl0694.35074
  7. [7] B.W. Char, K.O. Geddes, W.M. Gentleman, G.H. Gonnet, The design of MAPLE: a compact, portable and powerful computer algebra system, Proc. EU ROCAL, 83. Lecture Notes in Computer Science, t. 162, 1983, p. 101. 
  8. [8] S.R. Czapor and R.G. Mclenaghan, NP: A MAPLE package for performing calculations in the Newman-Pensose formalism. Gen. Rel. Grav., t. 19, 1987, p. 623-635. Zbl0613.53033MR892637
  9. [9] R. Debever, Le rayonnement gravitationnel : le tenseur de Riemann en relativité générale. Cah. Phys., t. 168-169, 1964, p. 303-349. MR187877
  10. [10] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus. S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur. K., t. 100, 1952, p. 1-43. Zbl0046.32201MR50136
  11. [11] P. Gunther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen. Arch. Rational Mech. Anal., t. 18, 1965, p. 103-106. Zbl0125.05404MR174865
  12. [12] P. Gunther, Eigine Satze uber Huygenssche Differentialgleichungen. Wiss. Zeitschr. Karl Marx Univ., Math.-Natu. Reihe Leipzig, t. 14, 1965, p. 498-507. Zbl0173.12203MR198012
  13. [13] P. Günther and V. Wünsch, Maxwellsche Gleichungen und Huygenssches Prinzip I. Math. Nach., t. 63, 1974, p. 97-121. Zbl0288.35042MR363377
  14. [14] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
  15. [15] H.P. Künzle, Maxwell fields satisfying Huygens' principle. Proc. Cambridge Philos. Soc., t. 64, 1968, p. 770-785. 
  16. [16] R.G. Mclenaghan, An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambridge Philos. Soc., t. 65, 1969, p. 139-155. Zbl0182.13403MR234700
  17. [17] R.G. Mclenaghan and J. Leroy, Complex recurrent space-times. Proc. Roy. Soc. London, t. A 327, 1972, p. 229-249. Zbl0243.53030MR309517
  18. [18] R.G. Mclenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions. Ann. Inst. Henri Poincaré, t. A 20, 1974, p. 153-188. Zbl0287.35058MR361452
  19. [19] R.G. Mclenaghan, Huygens' principle. Ann. Inst. Henri Poincaré, t. A 27, 1982, p. 211-236. Zbl0528.35057MR694586
  20. [20] E.T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., t. 3, 1962, p. 566-578. Zbl0108.40905MR141500
  21. [21] R. Penrose, A spinor approach to general relativity. Ann. Physics, t. 10, 1960, p. 171- 201. Zbl0091.21404MR115765
  22. [22] A.Z. Petrov, Einstein-Raume. Academie Verlag, Berlin, 1964. MR162594
  23. [23] F.A.E. Pirani, Introduction to gravitational radiation theory. Article in Lectures on General Relativity, edited by S. Deser and W. Ford, Brandeis Summer Institute in Theoretical Physics, t. 1, 1964, Prentice-Hall, New York. 
  24. [24] B. Rinke and V. Wünsch, Zum Huygensschen Prinzip bei der skalaren Wellengleichung. Beitr. zur Analysis, t. 18, 1981, p. 43-75. Zbl0501.53010MR650138
  25. [25] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen. Math. Nach., t. 47, 1970, p. 131-154. Zbl0211.40803MR298221
  26. [26] V. Wünsch, Maxwellsche Gleichungen und Huygenssches Prinzip II. Math. Nach., t. 73, 1976, p. 19-36. Zbl0288.35043MR426807
  27. [27] V. Wünsch, Über eine Klasse Konforminvarianter Tensoren. Math. Nach., t. 73, 1976, p. 37-58. Zbl0287.53014MR433342
  28. [28] V. Wünsch, Cauchy-problem und Huygenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen I. Beitr. zur Analysis, t. 12, 1978, p. 47-76. Zbl0448.58022MR507097
  29. [29] V. Wünsch, Cauchy-problem und Huyenssches Prinzip bei einigen Klassen spinorieller Feldgleichungen II. Beitr. zur Analysis, t. 13, 1979, p. 147-177. Zbl0467.35067MR536225

Citations in EuDML Documents

top
  1. V. Wünsch, Huygens' principle on Petrov type N space-times
  2. R. G. McLenaghan, G. C. Williams, An explicit determination of the Petrov type D spacetimes on which Weyl's neutrino equation and Maxwell's equations satisfy Huygens' principle
  3. R. G. McLenaghan, F. D. Sasse, Nonexistence of Petrov type III space-times on which Weyl's neutrino equation or Maxwell's equations satisfy Huygens' principle
  4. V. Wünsch, Moments and Huygens' principle for conformally invariant field equations in curved space-times
  5. J. Carminati, S. R. Czapor, R. G. McLenaghan, G. C. Williams, Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
  6. R. G. McLenaghan, T. F. Walton, An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times
  7. R. Gerlach, V. Wünsch, Contributions to polynomial conformal tensors
  8. S. R. Czapor, R. G. McLenaghan, F. D. Sasse, Complete solution of Hadamard's problem for the scalar wave equation on Petrov type III space-times
  9. W. G. Anderson, R. G. McLenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.