An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times

R. G. McLenaghan; T. F. Walton

Annales de l'I.H.P. Physique théorique (1988)

  • Volume: 48, Issue: 3, page 267-280
  • ISSN: 0246-0211

How to cite

top

McLenaghan, R. G., and Walton, T. F.. "An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times." Annales de l'I.H.P. Physique théorique 48.3 (1988): 267-280. <http://eudml.org/doc/76400>.

@article{McLenaghan1988,
author = {McLenaghan, R. G., Walton, T. F.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Huygens' principle; non-self-adjoint wave equation; Petrov type; space- time; Hadamard's problem},
language = {eng},
number = {3},
pages = {267-280},
publisher = {Gauthier-Villars},
title = {An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times},
url = {http://eudml.org/doc/76400},
volume = {48},
year = {1988},
}

TY - JOUR
AU - McLenaghan, R. G.
AU - Walton, T. F.
TI - An explicit determination of the non-self-adjoint wave equations on curved space-time that satisfy Huygens' principle. Part I : Petrov type N background space-times
JO - Annales de l'I.H.P. Physique théorique
PY - 1988
PB - Gauthier-Villars
VL - 48
IS - 3
SP - 267
EP - 280
LA - eng
KW - Huygens' principle; non-self-adjoint wave equation; Petrov type; space- time; Hadamard's problem
UR - http://eudml.org/doc/76400
ER -

References

top
  1. [1] L. Asgeirsson, Some hints on Huygens' principle and Hadamard's conjecture. Comm. Pure Appl. Math., t. 9, 1956, p. 307-326. Zbl0074.31101MR82034
  2. [2] J. Carminati and R.G. McLenaghan, Some new results on the validity of Huygens' principle for the scalar wave equation on a curved space-time. Article in Gravitation. Geometry and Relativistic Physics, Proceedings of the Journées Relativistes 1984, Aussois, France, edited by Laboratoire Gravitation et Cosmologie Relativistes. Institut Henri Poincaré, Lecture Notes in Physics, t. 212, Springer-Verlag, Berlin, 1984. Zbl0557.53046MR780225
  3. [3] J. Carminati and R.G. Mclenaghan, An explicit determination of the Petrov type N space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Ann. Inst. Henri Poincaré, Phys. Théor., t. 44, 1986, p. 115-153. Zbl0595.35067MR839281
  4. [4] J. Carminati and R.G. McLenaghan, An explicit determination of the space-times on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part II: Petrov type D space-times. Ann. Inst. Henri Poincaré, Phys. Théor., t. 47, 1987, p. 337-354. Zbl0694.35074MR933681
  5. [5] J. Carminati and R.G. McLenaghan, An explicit determination of the spacetimes on which the conformally invariant scalar wave equation satisfies Huygens' principle. Part III: Petrov type III space-times. Ann. Inst. Henri Poincaré, Phys. Théor., in press. Zbl0706.35131
  6. [6] R. Debever, Le rayonnement gravitationnel : le tenseur de Riemann en relativité générale. Cah. Phys., t. 168-169, 1964, p. 303-349. MR187877
  7. [7] P. Günther, Zur Gültigkeit des Huygensschen Princips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus. S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur.,K., t. 100, 1952, p. 1-43. Zbl0046.32201MR50136
  8. [8] P. Günther, Ein Beispiel einer nichttrivalen Huygensschen Differentialgleichungen mit vier unabhängigen Variablen. Arch. Rational Mech. Anal., t. 18, 1965, p. 103- 106. Zbl0125.05404MR174865
  9. [9] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, New Haven, 1923. Zbl49.0725.04JFM49.0725.04
  10. [10] J. Hadamard, The problem of diffusion of waves. Ann. of Math., t. 43, 1942, p. 510-522. Zbl0063.01841MR6809
  11. [11] E. Hölder, Poissonsche Wellenformel in nichteuclidischen Räumen. Ber. Verh. Sachs. Akad. Wiss. Leipzig, t. 99, 1938, p. 55-66. Zbl0019.26101JFM64.1174.02
  12. [12] M. Mathisson, Le problème de M. Hadamard relatif à la diffusion des ondes. Acta Math., t. 71, 1939, p. 249-282. Zbl0022.22802MR728
  13. [13] R.G. McLenaghan, An explicit determination of the empty space-times on which the wave equation satisfies Huygens' principle. Proc. Cambridge Philos. Soc., t. 65, 1969, p. 139-155. Zbl0182.13403MR234700
  14. [14] R. G McLENAGHAN and J. Leroy, Complex recurrent spacetimes. Proc. Roy. Soc. London, t. A327, 1972, p. 229-249. Zbl0243.53030
  15. [15] R.G. McLenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions. Ann. Inst. Henri Poincaré, t. A20, 1974, p. 153-188. Zbl0287.35058MR361452
  16. [16] R.G. McLenaghan, Huygens' principle. Ann. Inst. Henri Poincaré, t. A27, 1982, p. 211-236. Zbl0528.35057MR694586
  17. [17] E.T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys., t. 3, 1962, p. 566-578. Zbl0108.40905MR141500
  18. [18] R. Penrose, A spinor approach to general relativity. Ann. Physics, t. 10, 1960, p. 171-201. Zbl0091.21404MR115765
  19. [19] A.Z. Petrov, Einstein-Raume. Academic Verlag, Berlin, 1964. MR162594
  20. [20] F.A.E. Pirani, Introduction to gravitational radiation theory. Article in Lectures on General Relativity, edited by S. Deser and W. Ford, Brandeis Summer Institute in Theoretical Physics, t. 1, 1964, Prentice-Hall, New York. 
  21. [21] B. Rinke and V. Wünsch, Zum Huygensschen Prinzip bei der skalaren Wellengleichung. Beitr. zur Analysis, t. 18, 1981, p. 43-75. Zbl0501.53010MR650138
  22. [22] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen. Math. Nachr., t. 47, 1970, p. 131-154. Zbl0211.40803MR298221
  23. [23] V. Wünsch, Über eine Klasse Konforminvariater Tensoren. Math. Nach., t. 73, 1976, p. 37-58. Zbl0287.53014MR433342

Citations in EuDML Documents

top
  1. W. G. Anderson, R. G. McLenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. A sixth necessary condition
  2. R. G. McLenaghan, G. C. Williams, An explicit determination of the Petrov type D spacetimes on which Weyl's neutrino equation and Maxwell's equations satisfy Huygens' principle
  3. W. G. Anderson, R. G. McLenaghan, F. D. Sasse, Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times
  4. J. Carminati, S. R. Czapor, R. G. McLenaghan, G. C. Williams, Consequences of the validity of Huygens' principle for the conformally invariant scalar wave equation, Weyl's neutrino equation and Maxwell's equations on Petrov type II space-times
  5. S. R. Czapor, R. G. McLenaghan, F. D. Sasse, Complete solution of Hadamard's problem for the scalar wave equation on Petrov type III space-times

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.