Polynomial bounds on the number of scattering poles for symmetric systems
Annales de l'I.H.P. Physique théorique (1991)
- Volume: 54, Issue: 2, page 199-208
- ISSN: 0246-0211
Access Full Article
topHow to cite
topVodev, G.. "Polynomial bounds on the number of scattering poles for symmetric systems." Annales de l'I.H.P. Physique théorique 54.2 (1991): 199-208. <http://eudml.org/doc/76528>.
@article{Vodev1991,
author = {Vodev, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetric first order systems; scattering poles},
language = {eng},
number = {2},
pages = {199-208},
publisher = {Gauthier-Villars},
title = {Polynomial bounds on the number of scattering poles for symmetric systems},
url = {http://eudml.org/doc/76528},
volume = {54},
year = {1991},
}
TY - JOUR
AU - Vodev, G.
TI - Polynomial bounds on the number of scattering poles for symmetric systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 2
SP - 199
EP - 208
LA - eng
KW - symmetric first order systems; scattering poles
UR - http://eudml.org/doc/76528
ER -
References
top- [1] C. Bardos, J. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné application à la théorie de la diffusion, Comm. Partial Diff. Eq., T. 7, 1982, pp. 905-958. Zbl0496.35067MR668585
- [2] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer Verlag, Berlin, 1983. Zbl0521.35001
- [3] A. Intissar, A Polynomial Bound on the Number of Scattering Poles for a Potential in Even Dimensional Space Rn, Comm. Partial Diff. Eq., T. 11, 1986, pp. 367-396. Zbl0607.35069MR829322
- [4] A. Intissar, On the Value Distribution of the Scattering Poles Associated to the Schrödinger Operator H = (- iV+b(x))2+α(x) in Rn, n≧3, preprint.
- [5] P.D. Lax and R.S. Phillips, Scattering Theory, Academic Press, 1967. Zbl0186.16301MR217440
- [6] R.B. Melrose, Polynomial Bounds on the Number of Scattering Poles, J. Funct. Anal., T. 53, 1983, pp. 287-303. Zbl0535.35067MR724031
- [7] R.B. Melrose, Polynomial Bounds on the Distribution of Poles in Scattering by an Obstacle, Journées « Equations aux Dérivées Partielles », Saint-Jean-de-Monts, 1984. Zbl0621.35073
- [8] R.B. Melrose, Weyl Asymptotics for the Phase in Obstacle Scattering, Comm. Partial Diff. Eq., T. 13, 1988, pp. 1431-1439. Zbl0686.35089MR956828
- [9] E.C. Titchmarsch, The Theory of Functions, Oxford University Press, 1968.
- [10] G. Vodev, Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, n≧3, Odd, Osaka J. Math. (to appear). Zbl0754.35102MR1132174
- [11] G. Vodev, Sharp Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, preprint. Zbl0754.35105
- [12] M. Zworski, Distribution of Poles for Scattering on the Real Line, J. Funct. Anal., T. 73, 1987, pp. 277-296. Zbl0662.34033MR899652
- [13] M. Zworski, Sharp Polynomial Bounds on the Number of Scattering Poles of Radial Potentials, J. Funct. Anal., T. 82, 1989, pp. 370-403. Zbl0681.47002MR987299
- [14] M. Zworski, Sharp Polynomial Bounds on the Number of Scattering Poles, Duke Math. J., T. 59, 1989, pp. 311-323. Zbl0705.35099MR1016891
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.