Polynomial bounds on the number of scattering poles for symmetric systems

G. Vodev

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 54, Issue: 2, page 199-208
  • ISSN: 0246-0211

How to cite

top

Vodev, G.. "Polynomial bounds on the number of scattering poles for symmetric systems." Annales de l'I.H.P. Physique théorique 54.2 (1991): 199-208. <http://eudml.org/doc/76528>.

@article{Vodev1991,
author = {Vodev, G.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {symmetric first order systems; scattering poles},
language = {eng},
number = {2},
pages = {199-208},
publisher = {Gauthier-Villars},
title = {Polynomial bounds on the number of scattering poles for symmetric systems},
url = {http://eudml.org/doc/76528},
volume = {54},
year = {1991},
}

TY - JOUR
AU - Vodev, G.
TI - Polynomial bounds on the number of scattering poles for symmetric systems
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 54
IS - 2
SP - 199
EP - 208
LA - eng
KW - symmetric first order systems; scattering poles
UR - http://eudml.org/doc/76528
ER -

References

top
  1. [1] C. Bardos, J. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné application à la théorie de la diffusion, Comm. Partial Diff. Eq., T. 7, 1982, pp. 905-958. Zbl0496.35067MR668585
  2. [2] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer Verlag, Berlin, 1983. Zbl0521.35001
  3. [3] A. Intissar, A Polynomial Bound on the Number of Scattering Poles for a Potential in Even Dimensional Space Rn, Comm. Partial Diff. Eq., T. 11, 1986, pp. 367-396. Zbl0607.35069MR829322
  4. [4] A. Intissar, On the Value Distribution of the Scattering Poles Associated to the Schrödinger Operator H = (- iV+b(x))2+α(x) in Rn, n≧3, preprint. 
  5. [5] P.D. Lax and R.S. Phillips, Scattering Theory, Academic Press, 1967. Zbl0186.16301MR217440
  6. [6] R.B. Melrose, Polynomial Bounds on the Number of Scattering Poles, J. Funct. Anal., T. 53, 1983, pp. 287-303. Zbl0535.35067MR724031
  7. [7] R.B. Melrose, Polynomial Bounds on the Distribution of Poles in Scattering by an Obstacle, Journées « Equations aux Dérivées Partielles », Saint-Jean-de-Monts, 1984. Zbl0621.35073
  8. [8] R.B. Melrose, Weyl Asymptotics for the Phase in Obstacle Scattering, Comm. Partial Diff. Eq., T. 13, 1988, pp. 1431-1439. Zbl0686.35089MR956828
  9. [9] E.C. Titchmarsch, The Theory of Functions, Oxford University Press, 1968. 
  10. [10] G. Vodev, Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, n≧3, Odd, Osaka J. Math. (to appear). Zbl0754.35102MR1132174
  11. [11] G. Vodev, Sharp Polynomial Bounds on the Number of Scattering Poles for Metric Perturbations of the Laplacian in Rn, preprint. Zbl0754.35105
  12. [12] M. Zworski, Distribution of Poles for Scattering on the Real Line, J. Funct. Anal., T. 73, 1987, pp. 277-296. Zbl0662.34033MR899652
  13. [13] M. Zworski, Sharp Polynomial Bounds on the Number of Scattering Poles of Radial Potentials, J. Funct. Anal., T. 82, 1989, pp. 370-403. Zbl0681.47002MR987299
  14. [14] M. Zworski, Sharp Polynomial Bounds on the Number of Scattering Poles, Duke Math. J., T. 59, 1989, pp. 311-323. Zbl0705.35099MR1016891

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.