Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times

W. G. Anderson; R. G. McLenaghan; F. D. Sasse

Annales de l'I.H.P. Physique théorique (1999)

  • Volume: 70, Issue: 3, page 259-276
  • ISSN: 0246-0211

How to cite

top

Anderson, W. G., McLenaghan, R. G., and Sasse, F. D.. "Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times." Annales de l'I.H.P. Physique théorique 70.3 (1999): 259-276. <http://eudml.org/doc/76815>.

@article{Anderson1999,
author = {Anderson, W. G., McLenaghan, R. G., Sasse, F. D.},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {scalar wave equation; Petrov type III space-times; Huygens' principle},
language = {eng},
number = {3},
pages = {259-276},
publisher = {Gauthier-Villars},
title = {Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times},
url = {http://eudml.org/doc/76815},
volume = {70},
year = {1999},
}

TY - JOUR
AU - Anderson, W. G.
AU - McLenaghan, R. G.
AU - Sasse, F. D.
TI - Huygens' principle for the non-self-adjoint scalar wave equation on Petrov type III space-times
JO - Annales de l'I.H.P. Physique théorique
PY - 1999
PB - Gauthier-Villars
VL - 70
IS - 3
SP - 259
EP - 276
LA - eng
KW - scalar wave equation; Petrov type III space-times; Huygens' principle
UR - http://eudml.org/doc/76815
ER -

References

top
  1. [1] W. Anderson, Contributions to the study of Huygens' Principle for non-self-adjoint scalar wave equations on curved space-time, M. Math. Thesis, University of Waterloo, 1991. 
  2. [2] W.G. Anderson and R.G. Mclenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. II. - A sixth necessary condition, Ann. Inst. Henri Poincaré, Phys. Théor., 60, 1994, pp. 373-432. Zbl0806.35104MR1288586
  3. [3] W.G. Anderson, R.G. Mclenaghan and T.F. Walton, An explicit determination of the Non-self-adjoint wave equations that satisfy Huygens' principle on Petrov type III background space-times, Zeitschrift für Analysis und ihre Anwendungen - Journal for Analysis and its Applications, 16, 1996, pp. 37-58. Zbl0885.35062MR1453390
  4. [4] S.R. Czapor and R.G. Mclenaghan, NP: A Maple package for performing calculations in the Newman-Penrose formalism. Gen. Rel. Gravit., 19, 1987, pp. 623-635. Zbl0613.53033MR892637
  5. [5] S.R. Czapor, Gröbner Basis Methods for Solving Algebraic Equations, Research Report CS-89-51, 1989, Department of Computer Science, University of Waterloo, Ontario, Canada. Zbl1209.13002
  6. [6] S.R. Czapor, R.G. Mclenaghan and J. Carminati, The automatic conversion of spinor equations to dyad form in MAPLE, Gen. Rel. Gravit., 24, 1992, pp. 911-928. Zbl0758.53047MR1180241
  7. [7] P. Günther, Zur Gültigkeit des huygensschen Prinzips bei partiellen Differentialgleichungen von normalen hyperbolischen Typus, S.-B. Sachs. Akad. Wiss. Leipzig Math.-Natur K., 100, 1952, pp. 1-43. Zbl0046.32201MR50136
  8. [8] R.G. Mclenaghan, On the validity of Huygens' principle for second order partial differential equations with four independent variables. Part I: Derivation of necessary conditions, Ann. Inst. Henri Poincaré, A20, 1974, pp. 153-188. Zbl0287.35058MR361452
  9. [9] R.G. Mclenaghan, Huygens' principle, Ann. Inst. Henri Poincaré27, 1982, pp. 211-236. Zbl0528.35057MR694586
  10. [10] R.G. Mclenaghan and T.F. Walton, An explicit determination of the non-self-adjoint wave equations on a curved space-time that satisfies Huygens' principle. Part I: Petrov type N background space-times, Ann. Inst. Henri Poincaré, Phys. Théor., 48, 1988, pp. 267-280. Zbl0645.53047MR950268
  11. [11] R.G. Mclenaghan and T.G.C. Williams, An explicit determination of the Petrov type D space-times on which Weyl's neutrino equation and Maxwell's equations satisfiy Huygens' principle, Ann. Inst. Henri Poincaré, Phys. Théor., 53, 1990, pp. 217-223. Zbl0709.53053MR1079778
  12. [12] R.G. Mclenaghan and F.D. Sasse, Nonexistence of Petrov type III space-times on which Weyl's neutrino equation or Maxwell's equations satisfy Huygens' principle, Ann. Inst. Henri Poincaré, Phys. Théor., 65, 1996, pp. 253-271. Zbl0869.53061MR1420704
  13. [13] E.T. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 1962, pp. 566-578. Zbl0108.40905MR141500
  14. [14] R. Penrose, A spinor approach to general relativity, Ann. Physics, 10, 1960, pp. 171-201. Zbl0091.21404MR115765
  15. [15] F.A.E. Pirani, in Lectures on General Relativity, S. Deser and W. Ford, ed., Prentice-Hall, New Jersey, 1964. 
  16. [16] F.D. Sasse, Huygens' Principle for Relativistic Wave Equations on Petrov type III Space-Times, Ph.D. Thesis, University of Waterloo, 1997. Zbl0885.53078
  17. [17] T.F. Walton, The validity of Huygens' Principle for the non-self-adjoint scalar wave equations on curved space-time, M. Math. Thesis, University of Waterloo, 1988. 
  18. [18] V. Wünsch, Über selbstadjungierte Huygenssche Differentialgleichungen mit vier unabhängigen Variablen, Math. Nachr., 47, 1970, pp. 131-154. Zbl0211.40803MR298221
  19. [19] V. Wünsch, Huygens' principle on Petrov type D space-times, Ann. Physik, 46, 1989, pp. 593-597. Zbl0697.53027MR1051239

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.