Deux applications de la géométrie locale des diffiétés

Michel Fliess; Jean Lévine; Philippe Martin; Pierre Rouchon

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 66, Issue: 3, page 275-292
  • ISSN: 0246-0211

How to cite

top

Fliess, Michel, et al. "Deux applications de la géométrie locale des diffiétés." Annales de l'I.H.P. Physique théorique 66.3 (1997): 275-292. <http://eudml.org/doc/76753>.

@article{Fliess1997,
author = {Fliess, Michel, Lévine, Jean, Martin, Philippe, Rouchon, Pierre},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lie-Bäcklund transformations; diffiety; Cartan distributions; differential dimension; Lie-Bäcklund fiber bundle; nonholonomic constraint system; configuration diffiety},
language = {fre},
number = {3},
pages = {275-292},
publisher = {Gauthier-Villars},
title = {Deux applications de la géométrie locale des diffiétés},
url = {http://eudml.org/doc/76753},
volume = {66},
year = {1997},
}

TY - JOUR
AU - Fliess, Michel
AU - Lévine, Jean
AU - Martin, Philippe
AU - Rouchon, Pierre
TI - Deux applications de la géométrie locale des diffiétés
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 3
SP - 275
EP - 292
LA - fre
KW - Lie-Bäcklund transformations; diffiety; Cartan distributions; differential dimension; Lie-Bäcklund fiber bundle; nonholonomic constraint system; configuration diffiety
UR - http://eudml.org/doc/76753
ER -

References

top
  1. [1] D.V. Alekseevskij, A.M. Vinogradov et V.V. Lychagin, Geometry I, Basic Ideas and Concepts of Differential Geometry, Encycl. Math. Sci., Vol. 28, Springer-Verlag, Berlin, 1991. MR1300019
  2. [2] R.L. Anderson et N.H. Ibragimov, Lie-Bäcklund Transformations in Applications, S.I.A.M., Philadelphie, 1979. Zbl0447.58001
  3. [3] P. Appell, Traité de Mécanique Rationnelle, t. 2, 6e éd., Gauthier-Villars, Paris, 1953. 
  4. [4] V.I. Arnold, V.V. Kozlov et A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encycl. Math. Sci., Vol. 3, Springer-Verlag, Berlin, 1988. MR923953
  5. [5] J.E. Björk, Rings of Differential Operators, North-Holland, Amsterdam, 1979. Zbl0499.13009MR549189
  6. [6] K.E. Brenan, S.L. Campbell et L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier, Amsterdam, 1989. Zbl0699.65057MR1101809
  7. [7] A. Buium, Differential Algebraic Groups of Finite Dimension, Springer-Verlag, Berlin, 1992. Zbl0756.14028MR1176753
  8. [8] A. Buium, Differential Algebra and Diophantine Geometry, Hermann, Paris, 1994. Zbl0870.12007MR1487891
  9. [9] P.J. Cassidy, The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras, J. Algebra, Vol. 121, 1989, p. 169-238. Zbl0678.14011MR992323
  10. [10] P.M. Cohn, Free Rings and their Relations, 2nd ed., Academic Press, Londres, 1985. Zbl0659.16001
  11. [11] P. Dazord, Mécanique hamiltonienne en présence de contraintes, Illinois J. Math., Vol. 38, 1994, p. 148-175. Zbl0790.58018MR1245839
  12. [12] E. Delaleau et W. Respondek, Lowering the orders of derivatives of controls in generalized state space systems, J. Math. Systems Estimat. Control, Vol. 5, 1995, p. 375-378. Zbl0852.93016MR1651823
  13. [13] L.A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapour, 1991. Zbl0753.35075MR1147643
  14. [14] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993. MR1237398
  15. [15] M. Fliess, Automatique et corps différentiels, Forum Math., Vol. 1, 1989, p. 227-238. Zbl0701.93048MR1005424
  16. [16] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control, Vol. 35, 1990, p. 994-1001. Zbl0724.93010MR1065035
  17. [17] Fliess and S.T. Glad, An algebraic approach to linear and nonlinear control, in Essays on Control: Perspectives in the Theory and its Applications (H. Trentelman and J. C. Willems Eds), Birkhäuser, Boston, 1993, p. 223-267. Zbl0838.93021MR1247273
  18. [18] M. Fliess, J. Lévine, P. Martin, F. Ollivier et P. Rouchon, Flatness and dynamic feedback linearizability: two approaches, Proc. 3rd European Control Conf., Rome, 1995, p. 649-654. 
  19. [19] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C. R. Acad. Sci. Paris, Vol. I-317, 1993, p. 981-986. Zbl0796.93042MR1249373
  20. [20] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Nonlinear control and Lie-Bäcklund transformations: Towards a new differential geometric standpoint, Proc. IEEE Control Decision Conf., Lake Buena Vista, FL, 1994, p. 339-344. 
  21. [21] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples, Internat. J. Control, Vol. 61, 1995, p. 1327-1361. Zbl0838.93022MR1613557
  22. [22] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Index and decomposition of nonlinear implicit differential equations, Proc. IFAC Conf. System Structure Control, Nantes, 1995, p. 43-48. 
  23. [23] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Design of trajectory stabilizing feedback for driftless flat systems, Proc. 3rd European Control Conf., Rome, 1995, p. 1882-1887. 
  24. [24] M. Fliess, J. Lévine, P. Martin et P. Rouchon, A Lie-Bäcklund transformation approach to equivalence and flatness of nonlinear systems, à paraître. Zbl0964.93028
  25. [25] M. Fliess, J. Lévine et P. Rouchon, A generalised state variable representation for a simplified crane description, Internat. J. Control, Vol. 58, 1993, p. 277-283. Zbl0782.93049MR1229850
  26. [26] G. Giachetta, Jet methods in nonholonomic mechanics, J. Math. Physics, Vol. 33, 1992, p. 1652-1665. Zbl0758.70010MR1158984
  27. [27] M. Gromov, Partial Differential Relations, Springer-Verlag, Berlin, 1986. Zbl0651.53001MR864505
  28. [28] V.N. Gusyatnikova, A.M. Vinogradov et V.A. Yumaguzhin, Secondary differential operators, J. Geometry Physics, Vol. 2, 1985, p. 23-65. Zbl0601.35007MR845467
  29. [29] E. Hairer, C. Lubich et M. Roche, The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Springer-Verlag, Berlin, 1989. Zbl0683.65050MR1027594
  30. [30] G. Hamel, Theoretische Mechanik, Springer-Verlag, Berlin, 1949. MR516809
  31. [31] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  32. [32] M. Henneaux et C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 1992. Zbl0838.53053MR1191617
  33. [33] N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985. Zbl0558.53040
  34. [34] A. Isidori, Nonlinear Control Systems, 3rd ed., Springer-Verlag, New York, 1995. 
  35. [35] J. Johnson, Kähler differentials and differential algebra, Ann. of Math., Vol. 89, 1969, p. 92-98. Zbl0179.34302MR238823
  36. [36] J. Johnson, Prolongations of integral domains, J. Algebra, Vol. 94, 1985, p. 173-211. MR789546
  37. [37] E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. Zbl0264.12102MR568864
  38. [38] E.R. Kolchin, Differential Algebraic Groups, Academic Press, Orlando, 1985. Zbl0556.12006MR776230
  39. [39] I.S. Krasil'shchik, V.V. Lychagin et A.M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986. Zbl0722.35001MR861121
  40. [40] B.A. Kupershmidt, The Variational Principles of Dynamics, World Scientific, Singapour, 1992. Zbl0917.58001MR1207138
  41. [41] Yu.I. Manin, Algebraic aspects of nonlinear differential equations, J. Soviet Math., Vol. 11, 1979, p. 1-122. Zbl0419.35001
  42. [42] E. Massa et E. Pagani, Classical dynamics of non-holonomic systems, Ann. Inst. H. Poincaré Phys. Théor., Vol. 55, 1991, p. 511-544. Zbl0731.70012MR1130215
  43. [43] E. Massa et E. Pagani, Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics, Ann. Inst. H. Poincaré Phys. Théor., Vol. 61, 1994, p. 17-62. Zbl0813.70004MR1303184
  44. [44] Ju.I. Neĭmark et N.A. Fufaev, Dynamics of Nonholonomic Systems, Amer. Math. Soc., Providence, R.I., 1972. 
  45. [45] H. Nijmeijer et van der Schaft, Nonlinear Control Systems, Springer-Verlag, New York, 1990. Zbl0701.93001
  46. [46] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer-Verlag, New York, 1993. Zbl0785.58003MR1240056
  47. [47] J.F. Ritt, Differential Algebra, Amer. Math. Soc., New York, 1950. Zbl0037.18402
  48. [48] J.C. Tougeron, Idéaux de Fonctions Différentiables, Springer-Verlag, Berlin, 1972. Zbl0251.58001MR440598
  49. [49] T. Tsujishita, Formal geometry of systems of differential equations, Sugaku Expos., Vol. 3, 1990, p. 25-73. Zbl0713.58020
  50. [50] T. Tsujishita, Homological method of computing invariants of systems of differential equations, Diff. Geometry Appl., Vol. 1, 1991, p. 3-34. Zbl0722.58036MR1109811
  51. [51] A.M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math., Vol. 2, 1984, p. 21-78. Zbl0534.58005MR736872
  52. [52] A.M. Vinogradov, Ed., Symmetries of Partial Differential Equations, Kluwer, Dordrecht, 1989 (reprinted from Acta Appl. Math., Vol. 15, 1989, n° 1-2, and Vol. 16, 1989, n° 1-2). Zbl0684.35002MR1007340
  53. [53] A.M. Vinogradov, Scalar differential invariants, diffieties and characteristic classes, in Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia Ed.), North-Holland, Amsterdam, 1991, p. 379-416. Zbl0735.57012MR1098525
  54. [54] A.M. Vinogradov, From symmetries of partial differential equations towards secondary ("quantized") calculus, J. Geometry Physics, Vol. 14, 1994, p. 146-194. Zbl0815.58028MR1288219
  55. [55] E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge University Press, Cambridge, 1947. MR992404
  56. [56] V.V. Zharinov, On Bäcklund correspondences, Math. USSR Sb., Vol. 64, 1989, p. 277-293. Zbl0683.35005MR954929
  57. [57] V.V. Zharinov, Geometrical Aspects of Partial Differential Equations, World Scientific, Singapour, 1992. Zbl0763.58002MR1167448

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.