Deux applications de la géométrie locale des diffiétés
Michel Fliess; Jean Lévine; Philippe Martin; Pierre Rouchon
Annales de l'I.H.P. Physique théorique (1997)
- Volume: 66, Issue: 3, page 275-292
- ISSN: 0246-0211
Access Full Article
topHow to cite
topFliess, Michel, et al. "Deux applications de la géométrie locale des diffiétés." Annales de l'I.H.P. Physique théorique 66.3 (1997): 275-292. <http://eudml.org/doc/76753>.
@article{Fliess1997,
author = {Fliess, Michel, Lévine, Jean, Martin, Philippe, Rouchon, Pierre},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {Lie-Bäcklund transformations; diffiety; Cartan distributions; differential dimension; Lie-Bäcklund fiber bundle; nonholonomic constraint system; configuration diffiety},
language = {fre},
number = {3},
pages = {275-292},
publisher = {Gauthier-Villars},
title = {Deux applications de la géométrie locale des diffiétés},
url = {http://eudml.org/doc/76753},
volume = {66},
year = {1997},
}
TY - JOUR
AU - Fliess, Michel
AU - Lévine, Jean
AU - Martin, Philippe
AU - Rouchon, Pierre
TI - Deux applications de la géométrie locale des diffiétés
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 3
SP - 275
EP - 292
LA - fre
KW - Lie-Bäcklund transformations; diffiety; Cartan distributions; differential dimension; Lie-Bäcklund fiber bundle; nonholonomic constraint system; configuration diffiety
UR - http://eudml.org/doc/76753
ER -
References
top- [1] D.V. Alekseevskij, A.M. Vinogradov et V.V. Lychagin, Geometry I, Basic Ideas and Concepts of Differential Geometry, Encycl. Math. Sci., Vol. 28, Springer-Verlag, Berlin, 1991. MR1300019
- [2] R.L. Anderson et N.H. Ibragimov, Lie-Bäcklund Transformations in Applications, S.I.A.M., Philadelphie, 1979. Zbl0447.58001
- [3] P. Appell, Traité de Mécanique Rationnelle, t. 2, 6e éd., Gauthier-Villars, Paris, 1953.
- [4] V.I. Arnold, V.V. Kozlov et A.I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, in Dynamical Systems III, Encycl. Math. Sci., Vol. 3, Springer-Verlag, Berlin, 1988. MR923953
- [5] J.E. Björk, Rings of Differential Operators, North-Holland, Amsterdam, 1979. Zbl0499.13009MR549189
- [6] K.E. Brenan, S.L. Campbell et L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Elsevier, Amsterdam, 1989. Zbl0699.65057MR1101809
- [7] A. Buium, Differential Algebraic Groups of Finite Dimension, Springer-Verlag, Berlin, 1992. Zbl0756.14028MR1176753
- [8] A. Buium, Differential Algebra and Diophantine Geometry, Hermann, Paris, 1994. Zbl0870.12007MR1487891
- [9] P.J. Cassidy, The classification of the semisimple differential algebraic groups and the linear semisimple differential algebraic Lie algebras, J. Algebra, Vol. 121, 1989, p. 169-238. Zbl0678.14011MR992323
- [10] P.M. Cohn, Free Rings and their Relations, 2nd ed., Academic Press, Londres, 1985. Zbl0659.16001
- [11] P. Dazord, Mécanique hamiltonienne en présence de contraintes, Illinois J. Math., Vol. 38, 1994, p. 148-175. Zbl0790.58018MR1245839
- [12] E. Delaleau et W. Respondek, Lowering the orders of derivatives of controls in generalized state space systems, J. Math. Systems Estimat. Control, Vol. 5, 1995, p. 375-378. Zbl0852.93016MR1651823
- [13] L.A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapour, 1991. Zbl0753.35075MR1147643
- [14] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, Chichester, 1993. MR1237398
- [15] M. Fliess, Automatique et corps différentiels, Forum Math., Vol. 1, 1989, p. 227-238. Zbl0701.93048MR1005424
- [16] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control, Vol. 35, 1990, p. 994-1001. Zbl0724.93010MR1065035
- [17] Fliess and S.T. Glad, An algebraic approach to linear and nonlinear control, in Essays on Control: Perspectives in the Theory and its Applications (H. Trentelman and J. C. Willems Eds), Birkhäuser, Boston, 1993, p. 223-267. Zbl0838.93021MR1247273
- [18] M. Fliess, J. Lévine, P. Martin, F. Ollivier et P. Rouchon, Flatness and dynamic feedback linearizability: two approaches, Proc. 3rd European Control Conf., Rome, 1995, p. 649-654.
- [19] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, C. R. Acad. Sci. Paris, Vol. I-317, 1993, p. 981-986. Zbl0796.93042MR1249373
- [20] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Nonlinear control and Lie-Bäcklund transformations: Towards a new differential geometric standpoint, Proc. IEEE Control Decision Conf., Lake Buena Vista, FL, 1994, p. 339-344.
- [21] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples, Internat. J. Control, Vol. 61, 1995, p. 1327-1361. Zbl0838.93022MR1613557
- [22] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Index and decomposition of nonlinear implicit differential equations, Proc. IFAC Conf. System Structure Control, Nantes, 1995, p. 43-48.
- [23] M. Fliess, J. Lévine, P. Martin et P. Rouchon, Design of trajectory stabilizing feedback for driftless flat systems, Proc. 3rd European Control Conf., Rome, 1995, p. 1882-1887.
- [24] M. Fliess, J. Lévine, P. Martin et P. Rouchon, A Lie-Bäcklund transformation approach to equivalence and flatness of nonlinear systems, à paraître. Zbl0964.93028
- [25] M. Fliess, J. Lévine et P. Rouchon, A generalised state variable representation for a simplified crane description, Internat. J. Control, Vol. 58, 1993, p. 277-283. Zbl0782.93049MR1229850
- [26] G. Giachetta, Jet methods in nonholonomic mechanics, J. Math. Physics, Vol. 33, 1992, p. 1652-1665. Zbl0758.70010MR1158984
- [27] M. Gromov, Partial Differential Relations, Springer-Verlag, Berlin, 1986. Zbl0651.53001MR864505
- [28] V.N. Gusyatnikova, A.M. Vinogradov et V.A. Yumaguzhin, Secondary differential operators, J. Geometry Physics, Vol. 2, 1985, p. 23-65. Zbl0601.35007MR845467
- [29] E. Hairer, C. Lubich et M. Roche, The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Springer-Verlag, Berlin, 1989. Zbl0683.65050MR1027594
- [30] G. Hamel, Theoretische Mechanik, Springer-Verlag, Berlin, 1949. MR516809
- [31] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
- [32] M. Henneaux et C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 1992. Zbl0838.53053MR1191617
- [33] N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel, Boston, 1985. Zbl0558.53040
- [34] A. Isidori, Nonlinear Control Systems, 3rd ed., Springer-Verlag, New York, 1995.
- [35] J. Johnson, Kähler differentials and differential algebra, Ann. of Math., Vol. 89, 1969, p. 92-98. Zbl0179.34302MR238823
- [36] J. Johnson, Prolongations of integral domains, J. Algebra, Vol. 94, 1985, p. 173-211. MR789546
- [37] E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. Zbl0264.12102MR568864
- [38] E.R. Kolchin, Differential Algebraic Groups, Academic Press, Orlando, 1985. Zbl0556.12006MR776230
- [39] I.S. Krasil'shchik, V.V. Lychagin et A.M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986. Zbl0722.35001MR861121
- [40] B.A. Kupershmidt, The Variational Principles of Dynamics, World Scientific, Singapour, 1992. Zbl0917.58001MR1207138
- [41] Yu.I. Manin, Algebraic aspects of nonlinear differential equations, J. Soviet Math., Vol. 11, 1979, p. 1-122. Zbl0419.35001
- [42] E. Massa et E. Pagani, Classical dynamics of non-holonomic systems, Ann. Inst. H. Poincaré Phys. Théor., Vol. 55, 1991, p. 511-544. Zbl0731.70012MR1130215
- [43] E. Massa et E. Pagani, Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics, Ann. Inst. H. Poincaré Phys. Théor., Vol. 61, 1994, p. 17-62. Zbl0813.70004MR1303184
- [44] Ju.I. Neĭmark et N.A. Fufaev, Dynamics of Nonholonomic Systems, Amer. Math. Soc., Providence, R.I., 1972.
- [45] H. Nijmeijer et van der Schaft, Nonlinear Control Systems, Springer-Verlag, New York, 1990. Zbl0701.93001
- [46] P.J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer-Verlag, New York, 1993. Zbl0785.58003MR1240056
- [47] J.F. Ritt, Differential Algebra, Amer. Math. Soc., New York, 1950. Zbl0037.18402
- [48] J.C. Tougeron, Idéaux de Fonctions Différentiables, Springer-Verlag, Berlin, 1972. Zbl0251.58001MR440598
- [49] T. Tsujishita, Formal geometry of systems of differential equations, Sugaku Expos., Vol. 3, 1990, p. 25-73. Zbl0713.58020
- [50] T. Tsujishita, Homological method of computing invariants of systems of differential equations, Diff. Geometry Appl., Vol. 1, 1991, p. 3-34. Zbl0722.58036MR1109811
- [51] A.M. Vinogradov, Local symmetries and conservation laws, Acta Appl. Math., Vol. 2, 1984, p. 21-78. Zbl0534.58005MR736872
- [52] A.M. Vinogradov, Ed., Symmetries of Partial Differential Equations, Kluwer, Dordrecht, 1989 (reprinted from Acta Appl. Math., Vol. 15, 1989, n° 1-2, and Vol. 16, 1989, n° 1-2). Zbl0684.35002MR1007340
- [53] A.M. Vinogradov, Scalar differential invariants, diffieties and characteristic classes, in Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia Ed.), North-Holland, Amsterdam, 1991, p. 379-416. Zbl0735.57012MR1098525
- [54] A.M. Vinogradov, From symmetries of partial differential equations towards secondary ("quantized") calculus, J. Geometry Physics, Vol. 14, 1994, p. 146-194. Zbl0815.58028MR1288219
- [55] E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge University Press, Cambridge, 1947. MR992404
- [56] V.V. Zharinov, On Bäcklund correspondences, Math. USSR Sb., Vol. 64, 1989, p. 277-293. Zbl0683.35005MR954929
- [57] V.V. Zharinov, Geometrical Aspects of Partial Differential Equations, World Scientific, Singapour, 1992. Zbl0763.58002MR1167448
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.