Classical dynamics of non-holonomic systems : a geometric approach

Enrico Massa; Enrico Pagani

Annales de l'I.H.P. Physique théorique (1991)

  • Volume: 55, Issue: 1, page 511-544
  • ISSN: 0246-0211

How to cite

top

Massa, Enrico, and Pagani, Enrico. "Classical dynamics of non-holonomic systems : a geometric approach." Annales de l'I.H.P. Physique théorique 55.1 (1991): 511-544. <http://eudml.org/doc/76539>.

@article{Massa1991,
author = {Massa, Enrico, Pagani, Enrico},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {jet-bundle theory; non-holonomic systems; Gauss' principle of minimal constraint},
language = {eng},
number = {1},
pages = {511-544},
publisher = {Gauthier-Villars},
title = {Classical dynamics of non-holonomic systems : a geometric approach},
url = {http://eudml.org/doc/76539},
volume = {55},
year = {1991},
}

TY - JOUR
AU - Massa, Enrico
AU - Pagani, Enrico
TI - Classical dynamics of non-holonomic systems : a geometric approach
JO - Annales de l'I.H.P. Physique théorique
PY - 1991
PB - Gauthier-Villars
VL - 55
IS - 1
SP - 511
EP - 544
LA - eng
KW - jet-bundle theory; non-holonomic systems; Gauss' principle of minimal constraint
UR - http://eudml.org/doc/76539
ER -

References

top
  1. [1] J.L. Lagrange, Mécanique Analytique, in Œuvres de Lagrange, Paris, 1788. 
  2. [2] T. Levi-Civita and U. Amaldi, Lezioni di Meccanica Razionale, Zanichelli, Bologna, 1984, first edition 1922, second edition 1929. 
  3. [3] N.G. Chetaev, O printsipe Gaussa (On the Gauss Principle), Izd. Fiz.-Matem. Obshch. pri Kazansk. Univ., Ser. 3, Vol. 6, 1932-1933, pp. 323-326, Izvestia of the Physico-Mathematical Society of Kazan University, Series 3, Vol. 6, 1932-1933, pp. 62-67. 
  4. [4] N.G. Chetaev, Papers on Analytical Mechanics. On the Gauss Principle, Moscow, Izd. Akad. Nauk S.S.S.R., 1962. 
  5. [5] V.V. Rumiantsev, Certain Variational Principles of Mechanics, in Adv. Theor. Appl. Mech., A. ISHLINSKY and F. CHERNOUSKO Eds., English translation, MIR Publishers, Moscow, 1981. Zbl0547.70022
  6. [6] Y. Pironneau, Sur les liaisons non holonomes, non linéaires, déplacements virtuels à travail nul, conditions de Chetaev, Proceedings of the I.U.T.A.M.-I.S.I.M.M. Symposium on Modern Developments in Analytical Mechanics,Academy of Sciences of Turin, Turin, June 7-11, 1982, Atti della Accademia delle Scienze di Torino, Supplemento al Vol. 117, 1983, pp. 671-686. MR773517
  7. [7] K. Gauss, Uber ein neues allgemeines Grundgesetz der Mechanik, Crelle J. reine Math., Vol. 4, 1829, pp. 232. 
  8. [8] G. Hamel, Theoretische Mechanik, Eine einheitliche Einfuhrung in die gesamte Mechanik, Springer-Verlag, Berlin, 1949. Zbl0036.24301MR34137
  9. [9] E.T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed., Cambridge University Press, Cambridge, 1959. Zbl0049.40801MR103613
  10. [10] J.F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978. Zbl0418.35028MR517402
  11. [11] P. Libermann and C.M. Marle, Differential Geometry and Analytical Mechanics, D. Reidel Publ. Comp, Dordrecht, Holland, 1987. Zbl0643.53002MR882548
  12. [12] M. Ferrers, Extension of Lagrange's Equations, Quart. J. Math., Vol. 12, 1873, pp. 1-4. JFM04.0457.01
  13. [13] C. Neumann, Uber die rollende Bewegung eines Korpers auf einer gegebenen Horizontaleben unter dem Einfluss der Schwere, Ber. Verh. Konigl. Sachs. Ges. Wiss., Leipzig Math. Phys. Cl.37, 1885, pp. 352-378. JFM17.0893.02
  14. [14] G.A. Maggi, Di alcune nuove forme delle equazioni della dinamica applicabili ai sistemi anolonomi, Atti Accad. Naz. Lincei Rend. Cl. Fis. Mat. Nat., Vol. 10, 1901, pp. 287-291. JFM32.0714.02
  15. [15] P. Appel, Sur les liaisons exprimées par des relations non linéaires entre les vitesses, C.R. Acad. Sci. Paris, T. 152, 1911, pp. 1197-1199. Zbl42.0755.02JFM42.0755.02
  16. [16] P. Appel, Exemple de mouvement d'un point assujetti à une liaison exprimée par une relation non linéaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, Vol. 32, 1911, pp. 48-50. Zbl42.0756.01JFM42.0756.01
  17. [17] P. Appel, Traité de Mécanique Rationnelle, Gauthier-Villars, Paris, 1903. JFM40.0751.01
  18. [18] P.V. Voronets, On Equations of Motion for Nonholonomic Systems, Math. Sb., Vol. 22, 1901, pp. 659-686 (in russian). 
  19. [19] P.E. Jourdain, Note on an Analogue of the Gauss Principle of Least Constraint, The Quarterly J. Pure Appl. Math., 40, 1909, pp. 153-157. Zbl40.0780.01JFM40.0780.01
  20. [20] V. Volterra, Sopra una classe di equazioni dinamiche, Atti Acad. Sci. cl. Fis. Mat. Nat., Torino, Vol. 33, 1887. JFM29.0604.03
  21. [21] S.A. Chaplygin, On the Theory of Motion of Nonholonomic Systems. Theorems on the Reducing Multiplier, Math. Sb., Vol. 28, 1911, pp. 303-314, (in russian). 
  22. [22] L.A. Pars, A Treatise on Analytical Dynamics, Heinemaun, London, 1965. Zbl0125.12004
  23. [23] F.R. Gantmacher, Lezioni di Meccanica Analitica, Editori Riuniti, Roma, 1980. 
  24. [24] Iu.I. Neimark and N.A. FufaevDynamics of Nonholonomic Systems, Translations of Mathematical Monographs, Vol. 33, American Mathematical Society, Providence, Rhode Island, 1972. Zbl0245.70011
  25. [25] I.L. Khmelevskii, On a Problem of Chaplygin, P.M.M., Vol. 26, 1962, pp. 289-304. Zbl0114.15001MR142223
  26. [26] I. Iliev, On the Conditions for the Existence of the Reducing Chaplygin Factor, P.M.M., Vol. 49, 1985, pp. 295-301. Zbl0596.70011MR855811
  27. [27] V.S. Novoselov, Applications of Nonlinear Nonholonomic Coordinates in Analytical Mechanics, Leningrad, Gos. Univ., Ucenye Zap. 217, Ser. Mat. Nauk, Vol. 31, 1957, pp. 50-83 (in russian). Zbl0085.17703
  28. [28] V.S. Novoselov, Extended Equations of Motion of Nonlinear Nonholonomic Systems, Leningrad, Gos. Univ. , Ucenye Zap.217, Ser. Mat. Nauk, Vol. 31, 1957, pp. 84-89 (in russian). Zbl0085.17704MR90976
  29. [29] V.S. Novoselov, Application of Helmholtz's Method to the Study of the Motion of the Chaplygin Systems, Vestn. L.G.U., Ser. Mat. Mekh. Astron., Vol. 13, 1958, pp. 102- 111. Zbl0095.17703MR99128
  30. [30] V.S. Novoselov, Application of Helmholtz's Method to the Investigation of the Motion of Nonholonomic Systems, Vestn. L.G.U., Ser. Mat. Mekh. Astron., Vol. 13, 1958, pp. 80-87. Zbl0080.17303MR99129
  31. [31] V.S. Novoselov, Variational Methods in Mechanics, Leningrad, Izd. Leningrad. Gos. Univ., 1966. Zbl0141.41703MR210354
  32. [32] A.S. Sumbatov, Reduction of the Differential Equations of Nonholonomic Mechanics to Lagrange Form, P.M.M. Vol. 36, 1972, pp. 194-201. 
  33. [33] A.S. Sumbatov, On the Linear Integrals of the Chaplygin Equations, P.M.M., Vol. 45, 1981, pp. 339-342. Zbl0499.70022
  34. [34] N.K. Moshchuk, Reducing the Equations of Motion of Certain Non-Holonomic Chaplygin Systems to Lagrangian and Hamiltonian Form, P.M.M., Vol. 51, 1987, pp. 172-177. Zbl0653.70015MR946561
  35. [35] N.K. Moshchuk, On the Motion of the Chaplygin's Sledge, P.M.M., Vol. 51, 1987, pp. 426-430. Zbl0664.70019MR971656
  36. [36] V.V. Rumiantsev, On Hamilton's Principle for Nonholonomic Systems, P.M.M., Vol. 42, 1978, pp. 407-419. Zbl0419.70015
  37. [37] V.V. Rumiantsev, On the Lagrange and Jacobi Principles for Nonholonomic Systems, P.M.M., Vol. 43, 1979, pp. 625-632. Zbl0443.70012MR620568
  38. [38] V.V. Rumiantsev, On Integral Principles for Nonholonomic Systems, P.M.M., Vol. 46, 1982, pp. 1-8. Zbl0514.70016MR685650
  39. [39] V.V. Rumiantsev, On Some Problems of Analytical Dynamics of Nonholonomic Systems, Proceedings of the I.U.T.A.M.-I.S.I.M.M. Symposium on Modern Developments in Analytical Mechanics, Academy of Sciences of Turin, Turin, June 7-11, 1982, Atti dell'Accademia delle Scienze di Torino, Supplemento al Vol. 117, 1983, pp. 697-716. MR773520
  40. [40] I.L. Khmelevskii, On Hamilton's Principle for Nonholonomic Systems, P.M.M., Vol. 24, 1960, pp. 1177-1182. Zbl0102.39501
  41. [41] E. Kh. Naziev, On the Hamilton-Jacobi Method for Nonholonomic Systems, P.M.M., Vol. 36, 1972, pp. 1038-1045. MR334625
  42. [42] A. Pignedoli, On some Investigations of the Italian School about Holonomic and Non-Holonomic Systems, Proceedings of the I.U.T.A.M.-I.S.I.M.M. Symposium on Modern Developments in Analytical Mechanics, Academy of Sciences of Turin, Turin, June 7-11, 1982, Atti della Accademia delle Scienze di Torino, Supplemento al Vol. 117, 1983, pp. 645-670. MR773516
  43. [43] C. Cattaneo, Sulla struttura locale delle equazioni dinamiche di un sistema anolonomo, Rend. Sci. Fis. Mat. Nat. Accad. Lincei, Vol. 34, 1963, pp. 396-402. Zbl0168.21902MR160344
  44. [44] E. Clauser, Geometrizzazione della dinamica dei sistemi a vincoli mobili, Rend. Sc. Fis. Mat. Nat. Accad. Lincei, Vol. 19, 1955, pp. 33-39. Zbl0067.16804MR78795
  45. [45] G. Ferrarese, Sulle equazioni di moto di un sistema soggetto ad un vicolo anolonomo mobile, Rendiconti di Matematica Univ. Roma, Vol. 22, 1963, pp. 351-370. Zbl0126.19503MR168156
  46. [46] E. Delassus, Sur les liaisons non linéaires, C.R. Acad. Sci. Paris, T. 153, 1911, p. 626-628. Zbl42.0757.01JFM42.0757.01
  47. [47] E. Delassus, Sur les liaisons non linéaires et les mouvements étudiés par M. Appell, C.R. Acad. Sci. Paris, T. 153, 1911, pp. 707-710. Zbl42.0757.02JFM42.0757.02
  48. [48] E. Delassus, Leçons sur la dynamique des systèmes matériels, Hermann, Paris, 1913. Zbl44.0764.01JFM44.0764.01
  49. [49] V. Valcovici, Une extension des liaisons non holonomes, C.R. Acad. Sci. Paris, T. 243, 1956, pp. 1012-1014. Zbl0071.18003MR81623
  50. [50] V. Valcovici, Une extension des liaisons non holonomes, C.R. Acad. Sci. Paris, T. 243, 1956, pp. 1096-1098. Zbl0071.18003MR81055
  51. [51] V. Valcovici, Une extension des liaisons non holonomes et des principes variationnels, Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Nat. Kl., Vol. 102, 1958, pp. 1-39. Zbl0078.37505MR90218
  52. [52] Q.K. Ghori, Equations of Motion of a System with Nonlinear Nonholonomic Constraint, Arch. Rat. Mech. Anal., Vol. 11, 1962, pp. 114-116. Zbl0131.39103MR150999
  53. [53] Duo San, Equations of Motion of Systems with Second-order Nonlinear Nonholonomic Constraints, P.M.M., Vol. 37, 1973, pp. 329-334. Zbl0293.70014
  54. [54] V.I. Kirgetov, On "Possible Displacements" of Material Systems, P.M.M., Vol. 23, 1959, pp. 956-962. Zbl0091.17002MR113302
  55. [55] V.I. Kirgetov, On the Relaxation of Material System, P.M.M., Vol. 24, 1960, pp. 48-58. Zbl0096.38301MR119482
  56. [56] B.G. Kuznetsov, Generalized Virtual Displacements, P.M.M., Vol. 23, 1959, pp. 963-974. Zbl0091.16501MR113303
  57. [57] G.H. Pozharitskii, On the Equations of Motion for Systems with Nonideal Constraints, P.M.M., Vol. 24, 1960, pp. 669-675. Zbl0102.39703MR127575
  58. [58] L.N. Semenova, On Routh Theorem for Nonholonomic Systems, P.M.M., Vol. 29, 1965, pp. 167-169. Zbl0142.23101MR201108
  59. [59] L. Salvadori, Sulla stabilita dei moti merostatici di particolari sistemi anolonomi, Rend. Accad. Sci. Fis. Mat. Napoli, Vol. (IV), 20, 1953, pp. 66-78. Zbl0058.17802MR72582
  60. [60] L. Salvadori, Influenza di una sollecitazione dissipativa sulla stabilita' dei moti merostatici di una classe di sistemi anolonomi, Rend. Accad. Sci. Fis. Mat. Napoli, Vol. (IV), 33, 1966, pp. 191-198. Zbl0237.70025
  61. [61] V.V. Rumiantsev, On Stability of Motion of Nonholonomic System, P.M.M., Vol. 31, 1967, pp. 282-293. Zbl0159.26101
  62. [62] A.V. Karapetyan, On the Stability of Steady Motions of Chaplygin's Nonholonomic Systems, P.M.M., Vol. 42, 1978, pp. 863-870. Zbl0438.70018
  63. [63] A.V. Karapetyan, On the Problem of Steady Motion Stability of Nonholonomic Systems, P.M.M., Vol. 44, 1980, pp. 295-300. Zbl0464.70009
  64. [64] A.V. Karapetyan, On the Realization of Non-holonomic Constraints and the Stability of Celtic Stones, P.M.M., Vol. 45, 1981, pp. 30-36. Zbl0493.70008
  65. [65] A.V. Karapetyan, On the Stability of the Stationary Motions of Systems with Friction, P.M.M., Vol. 51, 1987, pp. 431-436. Zbl0664.70017MR971657
  66. [66] G. Fusco and M. Oliva, Dissipative Systems with Constraints, J. Diff. Eq., Vol. 63, 1986, pp. 362-388. Zbl0594.58037MR848274
  67. [67] N.N. Polyakhov, S.A. Zegzhda and M.P. Yushkov, Generalization of Gauss's Principle to Nonholonomic Systems of Higher Orders, Sov. Phys. Dokl., Vol. 28, 1983, pp. 330-332. Zbl0536.70021
  68. [68] A.M. Vershik and L.D. Faddeev, Differential Geometry and Lagrangian Mechanics with Constraints, Sov. Phys. Dokl., Vol. 17, 1972, pp. 34-36. Zbl0243.70014
  69. [69] R.W. Weber, Hamiltonian Systems with Constraints and their Meaning in Mechanics, Arch. Rat. Mech. Anal., Vol. 91, 1985, pp. 309-335. Zbl0606.58024MR807817
  70. [70] N.A. Fufaev, A Sphere Rolling on a Horizontal Rotating Plane, P.M.M., Vol. 47, 1984, pp. 27-29. Zbl0534.70008
  71. [71] N.A. Fufaev, Theory of the Motion of Systems with Rolling, P.M.M., Vol. 49, 1985, pp. 41-49. Zbl0593.70021
  72. [72] Fam Guen, On the Theory of Ignorable Displacements for Generalized Poincare'-Chetaev Equation, P.M.M., Vol. 45, 1981, pp. 343-350. Zbl0508.70011
  73. [73] S. Benenti, Geometrical Aspects of the Dynamics of Non-Holonomic Systems, Conférence « Journées Relativistes 1987 », Chambery, 14-16 mai 1987. 
  74. [74] E.G. Virga, Un'osservazione sui vincoli non perfetti, Riv. Mat. Univ. Parma, Vol. (4), 13, 1987, pp. 379-384. Zbl0672.70018
  75. [75] F. Cardin and G. Zanzotto, On Constrained Mechanical Systems: D'Alembert and Gauss' Principles, J. Math. Phys., Vol. 30, 1989, pp. 1473-1479. Zbl0678.70018MR1002251

Citations in EuDML Documents

top
  1. Marco Modugno, Raffaele Vitolo, The geometry of Newton's law and rigid systems
  2. Danilo Bruno, Meccanica Lagrangiana ed Hamiltoniana anolonoma: un approccio Gauge-invariante
  3. Michel Fliess, Jean Lévine, Philippe Martin, Pierre Rouchon, Deux applications de la géométrie locale des diffiétés
  4. Enrico Massa, Enrico Pagani, A new look at classical mechanics of constrained systems
  5. Enrico Massa, Enrico Pagani, Jet bundle geometry, dynamical connections, and the inverse problem of lagrangian mechanics
  6. Michal Čech, Jana Musilová, Symmetries and currents in nonholonomic mechanics

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.