Uniform Finsler Hadamard manifolds

Daniel Egloff

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 66, Issue: 3, page 323-357
  • ISSN: 0246-0211

How to cite

top

Egloff, Daniel. "Uniform Finsler Hadamard manifolds." Annales de l'I.H.P. Physique théorique 66.3 (1997): 323-357. <http://eudml.org/doc/76755>.

@article{Egloff1997,
author = {Egloff, Daniel},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {uniform Finsler manifold; nonpositive flag curvature; asymptotic geodesics; visual boundary; visibility; -hyperbolicity; Hilbert geometries; Finsler Hadamard manifolds},
language = {eng},
number = {3},
pages = {323-357},
publisher = {Gauthier-Villars},
title = {Uniform Finsler Hadamard manifolds},
url = {http://eudml.org/doc/76755},
volume = {66},
year = {1997},
}

TY - JOUR
AU - Egloff, Daniel
TI - Uniform Finsler Hadamard manifolds
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 66
IS - 3
SP - 323
EP - 357
LA - eng
KW - uniform Finsler manifold; nonpositive flag curvature; asymptotic geodesics; visual boundary; visibility; -hyperbolicity; Hilbert geometries; Finsler Hadamard manifolds
UR - http://eudml.org/doc/76755
ER -

References

top
  1. [1] M.T. Anderson and R. Schoen, Positive Harmonic Functions on Complete Manifolds of Negative Curvature, Annals of Math., Vol. 121, 1985, pp. 429-461. Zbl0587.53045MR794369
  2. [2] P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluver Academic Pub., 1993. Zbl0821.53001MR1273129
  3. [3] G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel, 1985. Zbl0576.53001MR827217
  4. [4] L. Auslander, On Curvature in Finsler Geometry, Trans. Amer. Math. Soc., Vol. 79, 1955, pp. 378-388. Zbl0066.16202MR71833
  5. [5] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, Progr. in Math., Vol. 61, Birkhäuser1985. Zbl0591.53001MR823981
  6. [6] D. Bao and S.S. Chern, On a Notable Connection in Finsler Geometry, Houston J. of Math. Vol. 19, No. 1, 1993, pp. 135-180. Zbl0787.53018MR1218087
  7. [7] Berestovkij V.N. and I.G. Nikolaev, Multidimensional Generalized Riemannian Spaces, Geometry IV, Encyclop. of Math. Sciences, Vol. 70, Springer, 1993. Zbl0781.53049MR1263965
  8. [8] L. Berwald, Über die n-dimensionalen Geometrien konstanter Krümmung bei denen die Geraden die Kürzesten sind, Math. Zeitschr., Vol. 30, 1930, pp. 449-469. Zbl55.0405.14JFM55.0405.14
  9. [9] L. Berwald, Über Finslersche und Cartansche Geometrie I, Mathematica, Vol. 17, 1941, pp. 34-58. MR6491JFM67.0673.02
  10. [10] Yu.D. Burago, M. Gromov and G. Perelman, A. D. Alekandrov's Space with Curvature bounded from below I, preprint. 
  11. [11] H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955. Zbl0112.37002MR75623
  12. [12] H. Busemann, Intrinsic Area, Ann. Math., Vol. 48, 1947, pp. 234-267. Zbl0029.35301MR20626
  13. [13] H. Busemann, Spaces with Non-Positive Curvature, Acta Math., Vol. 80, 1948, pp. 259-310. Zbl0038.10005MR29531
  14. [14] H. Busemann, Recent Synthetic Differential Geometry, Ergeb. der Math. und ihrer Grenzgebiete, Vol. 54, Springer, 1970. Zbl0194.53701MR296877
  15. [15] H. Busemann, Timelike Spaces, Dissert. Math, No. 53, 1967. Zbl0156.43201MR220238
  16. [16] H. Busemann, Problem IV, Desarguesian Spaces; in Mathematical Developments arising from Hilbert Problems, Proc. Symp. in Pure Math, Vol. 28, 1976, pp. 131-141 Zbl0352.50010MR430935
  17. [17] H. Busemann, Quasi-Hyperbolic Geometry, Rend. Circ. Matem. Palermo, Serie II, IV, 1955, pp. 1-14. 
  18. [18] H. Busemann and W. Mayer, On the Foundations of Calculus of Variations, Trans. Amer. Math. Soc., Vol. 49, 1941, pp. 173-198. Zbl0024.41703MR3475
  19. [19] H. Busemann and J.P. Kelly, Projective Geometry and Projective Metrics, Academic Press, New York, 1953. Zbl0052.37305MR54980
  20. [20] H. Busemann and B.B. Phadke, Spaces with Distinguished Geodesics, Monographs and Textbooks in Pure and Appl. Math., No. 108, 1987. Zbl0631.53001MR896903
  21. [21] H. Busemann and B.B. Phadke, Two Theorems on General Symmetric Spaces, Pacific J. of Math., Vol. 92, 1981, pp. 39-48. Zbl0458.53031MR618044
  22. [22] E. Cartan, Les espaces de Finsler, Actualités Scientifiques et Industrielles, No. 79, Paris, Hermann, 1934. Zbl0008.41805JFM60.0648.04
  23. [23] P. Dazord, Propriétés globales des géodésiques des espaces de Finsler, Thèse No. 575, Publ. Math., Lyon, 1969. 
  24. [24] P. Eberlein, Geodesic Flow in certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, 1972, pp. 151-170. Zbl0209.53304MR295387
  25. [25] P. Eberlein and B. O'Neill, Visibility Manifolds, Pacific J. Math., Vol. 46, 1973, pp. 45-109. Zbl0264.53026MR336648
  26. [26] D. Egloff, Some New Developments in Finsler Geometry, Dissertation, Univ. Fribourg, 1995. 
  27. [27] D. Egloff, On the Dynamics of Uniform Finsler Manifolds of Negative Flag Curvature, Preprint, Univ. Fribourg, 1995. Zbl0884.53052MR1448718
  28. [28] D. Egloff, Hilbert Geometries, Preprint, Univ. Fribourg, 1996. 
  29. [29] P. Finsler, Über Kurven und Flächen in allgemeinen Räumen, Birkhäuser Verlag, Basel, 1951. Zbl0044.37003MR42195
  30. [30] P. Foulon, Géométrie des équations différentielles du second ordre, Ann. Inst. Henri Poincaré, Vol. 45, No. 11986, pp. 1-28. Zbl0624.58011MR856446
  31. [31] P. Foulon, Réductibilité de systèmes dynamiques variationnels, Ann. Inst. Henri Poincaré, Vol. 45, No. 4, 1986, pp. 359-388. Zbl0614.70017MR880743
  32. [32] P. Foulon, Estimation de l'entropie des systèmes lagrangiens sans points conjugués, Ann. Inst. Henri Poincaré, Vol. 57, No. 2, 1992, pp. 117-146. Zbl0806.58029MR1184886
  33. [33] P. Foulon, Cours de troisième cycle, École Polytechnique Palaiseau, 1992. 
  34. [34] P. Funk, Über Geometrien bei denen die Geraden die Kürzesten sind, Math. Annalen, Vol. 101, 1929, pp. 226-237. Zbl55.1043.01MR1512527JFM55.1043.01
  35. [35] J. Grifone, Structure presque-tangente et connexions, I and II, Ann. Inst. Fourier, Vol. 22, No. 1, 1972, pp. 287-334, No. 3, 1972, pp. 291-338. Zbl0219.53032MR336636
  36. [36] M. Gromov, J. Lafontaine and P. Pansu, Structure métriques pour les variétés Riemanniennes, Cedic/Fernand Nathan, Paris, 1981. Zbl0509.53034MR682063
  37. [37] E. Heintze and H.C. Im Hof, Geometry of Horospheres, J. Diff. Geom., Vol. 12, 1977, pp. 481-491. Zbl0434.53038MR512919
  38. [38] E. Kann, Bonnet's Theorem in two-dimensional G-Spaces, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 765-784. Zbl0104.16801MR137081
  39. [39] A.B. Katok, Ergodic Properties of Degenerate Integrable Hamiltonian Systems, Math. USSR-Izv., Vol. 7, 1973, pp. 535-571. Zbl0316.58010
  40. [40] P. Kelly and E.G. Straus, Curvature in Hilbert Geometry, Pacific J. Math., Vol. 8, 1958, pp. 119-125. Zbl0081.16401MR96261
  41. [41] W. Klingenberg, Geodätischer Fluss auf Mannigfaltikeiten vom hyperbolischen Typ, Invent. Math., Vol. 14, 1971, pp. 63-82. Zbl0219.53037MR296975
  42. [42] F.P. Pedersen, On Space with Negative Curvature, Mat. Tidsskrift B, 1952, pp. 66-89. Zbl0048.40502MR55012
  43. [43] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall Inc., 1964. Zbl0129.13102MR193578
  44. [44] W. Ziller, Geometry of the Katok Examples, Ergod. Th. and Dynam. Sys., Vol. 3, 1983, pp. 135-157. Zbl0559.58027MR743032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.