Solutions of semilinear Schrödinger equations in H s

Hartmut Pecher

Annales de l'I.H.P. Physique théorique (1997)

  • Volume: 67, Issue: 3, page 259-296
  • ISSN: 0246-0211

How to cite

top

Pecher, Hartmut. "Solutions of semilinear Schrödinger equations in $H^s$." Annales de l'I.H.P. Physique théorique 67.3 (1997): 259-296. <http://eudml.org/doc/76770>.

@article{Pecher1997,
author = {Pecher, Hartmut},
journal = {Annales de l'I.H.P. Physique théorique},
keywords = {nonlinear Schrödinger equation; local problem; global small data problem; Besov spaces; Sobolev spaces},
language = {eng},
number = {3},
pages = {259-296},
publisher = {Gauthier-Villars},
title = {Solutions of semilinear Schrödinger equations in $H^s$},
url = {http://eudml.org/doc/76770},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Pecher, Hartmut
TI - Solutions of semilinear Schrödinger equations in $H^s$
JO - Annales de l'I.H.P. Physique théorique
PY - 1997
PB - Gauthier-Villars
VL - 67
IS - 3
SP - 259
EP - 296
LA - eng
KW - nonlinear Schrödinger equation; local problem; global small data problem; Besov spaces; Sobolev spaces
UR - http://eudml.org/doc/76770
ER -

References

top
  1. [1] J. Bergh and J. Löfström, Interpolation spaces, Springer, Berlin-Heidelberg-New York, 1976. Zbl0344.46071MR482275
  2. [2] Th Cazenave and F.B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Analysis, Vol. 14, 1990, pp. 807-836. Zbl0706.35127MR1055532
  3. [3] J. Ginibre, T. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré, Phys. Theor., Vol. 60, 1994, pp. 211-239. Zbl0808.35136MR1270296
  4. [4] J. Ginibre and G. Velo, The global Cauchy problem for the non linear Schrödinger equation revisited, Ann. Inst. H. Poincaré, Analyse non linéaire, Vol. 2, 1985, pp. 309-327. Zbl0586.35042MR801582
  5. [5] T. Kato, On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré, Phys. Theor., Vol. 46, 1987, pp. 113-129. Zbl0632.35038MR877998
  6. [6] T. Kato, On nonlinear Schrödinger equations II. Hs-solutions and unconditional well–posedness. J. d'Anal. Math., Vol. 67, 1995, pp. 281-306. Zbl0848.35124MR1383498
  7. [7] H. Lindblad and C.D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Functional Analysis, Vol. 130, 1995, pp. 357-426. Zbl0846.35085MR1335386
  8. [8] J.L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Etudes Scientifiques. Publ. Math., Vol. 19, 1964, pp. 5-68. Zbl0148.11403MR165343
  9. [9] H. Pecher, Local solutions of semilinear wave equations in Hs+1. Math. Meth. in the Appl. Sciences, Vol. 19, 1996, pp. 145-170. Zbl0845.35069MR1368792
  10. [10] J. Peetre, Über den Durchschnitt von Interpolationsräumen. Arch. Math. (Basel), Vol. 25, 1974, pp. 511-513. Zbl0293.46025MR383103
  11. [11] J. Schwartz, A remark on inequalities of Calderon-Zygmund type for vector-valued functions, Comm. Pure Appl. Math., Vol. 14, 1961, pp. 785-799. Zbl0106.08104MR143031
  12. [12] W.A. Strauss, Nonlinear wave equations. CBMS Lecture Notes, No. 73, American Math. Society, Providence, RI, 1989. MR1032250
  13. [13] Triebel H., Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam-New York-Oxford, 1978. Zbl0387.46032
  14. [14] K. Yajima, Existence of solutions for Schrödinger evolution equations. Comm. Math. Phys., Vol. 110, 1987, pp. 415-426. Zbl0638.35036MR891945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.