A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator
D. Bitouzé; B. Laurent; P. Massart
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 6, page 735-763
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBitouzé, D., Laurent, B., and Massart, P.. "A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator." Annales de l'I.H.P. Probabilités et statistiques 35.6 (1999): 735-763. <http://eudml.org/doc/77644>.
@article{Bitouzé1999,
author = {Bitouzé, D., Laurent, B., Massart, P.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {censored data; exponential inequality; law of iterated logarithm; empirical process},
language = {eng},
number = {6},
pages = {735-763},
publisher = {Gauthier-Villars},
title = {A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator},
url = {http://eudml.org/doc/77644},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Bitouzé, D.
AU - Laurent, B.
AU - Massart, P.
TI - A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 6
SP - 735
EP - 763
LA - eng
KW - censored data; exponential inequality; law of iterated logarithm; empirical process
UR - http://eudml.org/doc/77644
ER -
References
top- [1] R.F. Bass, Law of iterated logarithm for set-indexed partial sum processes with finite variance, Z. Warscheinlichkeitstheor. Verw. Geb.70 (1985) 591-608. Zbl0575.60034MR807339
- [2] L. Birgé and P. Massart, Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields97 (1993) 113-150. Zbl0805.62037MR1240719
- [3] L. Birgé and P. Massart, Minimum contrast estimators on sieves, Bernoulli4 (3) (1998) 329-375. Zbl0954.62033MR1653272
- [4] D. Bitouzé, Estimation de fonctionnelles d'une densité à partir d'observations directes ou censurées, Ph.D. Thesis, Laboratoire de modélisation statistique et stochastique, Bât. 425, Université de Paris XI, 91405 Orsay Cédex, France, 1995 (in English).
- [5] N. Breslow and J. Crowley, A large sample study of the life table and product limit estimators under random censorship, Ann. Statist.11 (1974) 49-58. Zbl0283.62023MR458674
- [6] I.H. Dinwoodie, Large deviations for censored data, Ann. Statist.21 (3) (1993) 1608-1620. Zbl0925.60020MR1241281
- [7] M.D. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smimov theorems, Ann. Math. Statist.23 (1952) 277-281. Zbl0046.35103MR47288
- [8] P. Doukhan, P. Massart and E. Rio, Invariance principles for absolutely regular empirical processes, Ann. Inst. Henri Poincaré31 (2) (1995) 393-427. Zbl0817.60028MR1324814
- [9] R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab.6 (6) (1978) 899-929. Zbl0404.60016MR512411
- [10] A. Dvoretzky, J.C. Kiefer and J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Ann. Math. Statist.33 (1956) 642-669. Zbl0073.14603MR83864
- [11] A. Földes and L. Rejtõ, A LIL type result for the product limit estimator, Z. Wahrscheinlichkeitstheor. Verw. Geb.56 (1981) 75-86. Zbl0443.62031MR612161
- [12] R.D. Gill, Large sample behavior of the product limit estimator on the whole line, Ann. Statist.11 ( 1983) 49-58. Zbl0518.62039MR684862
- [13] R.D. Gill, Glivenko-Cantelli for Kaplan-Meier, Math. Methods of Statistics3 (1) (1994) 76-87. Zbl0824.62045MR1272632
- [14] R.D. Gill, Lectures on survival analysis, in: Lectures on Probability Theory, École d'Été de Probabilités de Saint-Flour XXII-1992, Lecture Notes in Mathematics, Vol. 1581, Springer, Berlin, 1994, pp. 115-241. Zbl0809.62028MR1307414
- [15] R.D. Gill and S. Johansen, A survey of product-integration with a view towards applications in survival analysis, Ann. Statist.6 (1990) 1501-1555. Zbl0718.60087MR1074422
- [16] M.G. Gu and T.L. Lai, Functional laws of the iterated logarithm for the product-limit estimator of a distribution function under random censorship or truncation, Ann. Probab.18 (1) (1990) 160-189. Zbl0705.62040MR1043942
- [17] H.J. Hall and J.A. Wellner, Confidence bands for a survival curve from censored data, Biometrika67 (1980) 133-143. Zbl0423.62078MR570515
- [18] E.L. Kaplan and P. Meier, Non-parametric estimation from incomplete observations, J. Amer. Statist. Assoc.53 (1958) 562-563, 897-919. MR93867
- [19] P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann. Probab.18 (3) (1990) 1269-1283. Zbl0713.62021MR1062069
- [20] M. Ossiander, A central limit theorem under metric entropy with L2 bracketing, Ann. Probab.15 (1987) 897-919. Zbl0665.60036MR893905
- [21] G.R. Shorack and J.A. Wellner, Empirical Process with Applications to Statistics, Wiley, New York, 1986. Zbl1170.62365MR838963
- [22] W. Stute, Strong and weak representations of cumulative hazard function and Kaplan-Meier estimators on increasing sets, J. Statist. Planning and Inference42 (1994) 315-329. Zbl0815.62016MR1309627
- [23] W. Stute and J.L. Wang, The strong law under random censorship, Ann. Statist.21 (3) (1993) 1591-1607. Zbl0785.60020MR1241280
- [24] S. Van De Geer, Hellinger consistency of certain nonparametric maximum likelihood estimators, Ann. Statist.21 (1) (1993) 14-44. Zbl0779.62033MR1212164
- [25] M.J. Van Der Laan, Efficient and inefficient estimation in semiparametric models, Ph.D. Thesis, Department of Mathematics, University of Utrecht, the Netherlands, 1993.
- [26] M.J. Van Der Laan, Proving efficiency of NPMLE and identities, Technical Report 44, Group in Biostatistics, University of California, Berkeley, CA 94720, 1994.
- [27] J.G. Wang, A note on the uniform consistency of the Kaplan-Meier estimator, Ann. Statist.15 (1987) 1313-1316. Zbl0631.62043MR902260
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.