A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator

D. Bitouzé; B. Laurent; P. Massart

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 6, page 735-763
  • ISSN: 0246-0203

How to cite

top

Bitouzé, D., Laurent, B., and Massart, P.. "A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator." Annales de l'I.H.P. Probabilités et statistiques 35.6 (1999): 735-763. <http://eudml.org/doc/77644>.

@article{Bitouzé1999,
author = {Bitouzé, D., Laurent, B., Massart, P.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {censored data; exponential inequality; law of iterated logarithm; empirical process},
language = {eng},
number = {6},
pages = {735-763},
publisher = {Gauthier-Villars},
title = {A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator},
url = {http://eudml.org/doc/77644},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Bitouzé, D.
AU - Laurent, B.
AU - Massart, P.
TI - A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 6
SP - 735
EP - 763
LA - eng
KW - censored data; exponential inequality; law of iterated logarithm; empirical process
UR - http://eudml.org/doc/77644
ER -

References

top
  1. [1] R.F. Bass, Law of iterated logarithm for set-indexed partial sum processes with finite variance, Z. Warscheinlichkeitstheor. Verw. Geb.70 (1985) 591-608. Zbl0575.60034MR807339
  2. [2] L. Birgé and P. Massart, Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields97 (1993) 113-150. Zbl0805.62037MR1240719
  3. [3] L. Birgé and P. Massart, Minimum contrast estimators on sieves, Bernoulli4 (3) (1998) 329-375. Zbl0954.62033MR1653272
  4. [4] D. Bitouzé, Estimation de fonctionnelles d'une densité à partir d'observations directes ou censurées, Ph.D. Thesis, Laboratoire de modélisation statistique et stochastique, Bât. 425, Université de Paris XI, 91405 Orsay Cédex, France, 1995 (in English). 
  5. [5] N. Breslow and J. Crowley, A large sample study of the life table and product limit estimators under random censorship, Ann. Statist.11 (1974) 49-58. Zbl0283.62023MR458674
  6. [6] I.H. Dinwoodie, Large deviations for censored data, Ann. Statist.21 (3) (1993) 1608-1620. Zbl0925.60020MR1241281
  7. [7] M.D. Donsker, Justification and extension of Doob's heuristic approach to the Kolmogorov-Smimov theorems, Ann. Math. Statist.23 (1952) 277-281. Zbl0046.35103MR47288
  8. [8] P. Doukhan, P. Massart and E. Rio, Invariance principles for absolutely regular empirical processes, Ann. Inst. Henri Poincaré31 (2) (1995) 393-427. Zbl0817.60028MR1324814
  9. [9] R.M. Dudley, Central limit theorems for empirical measures, Ann. Probab.6 (6) (1978) 899-929. Zbl0404.60016MR512411
  10. [10] A. Dvoretzky, J.C. Kiefer and J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Ann. Math. Statist.33 (1956) 642-669. Zbl0073.14603MR83864
  11. [11] A. Földes and L. Rejtõ, A LIL type result for the product limit estimator, Z. Wahrscheinlichkeitstheor. Verw. Geb.56 (1981) 75-86. Zbl0443.62031MR612161
  12. [12] R.D. Gill, Large sample behavior of the product limit estimator on the whole line, Ann. Statist.11 ( 1983) 49-58. Zbl0518.62039MR684862
  13. [13] R.D. Gill, Glivenko-Cantelli for Kaplan-Meier, Math. Methods of Statistics3 (1) (1994) 76-87. Zbl0824.62045MR1272632
  14. [14] R.D. Gill, Lectures on survival analysis, in: Lectures on Probability Theory, École d'Été de Probabilités de Saint-Flour XXII-1992, Lecture Notes in Mathematics, Vol. 1581, Springer, Berlin, 1994, pp. 115-241. Zbl0809.62028MR1307414
  15. [15] R.D. Gill and S. Johansen, A survey of product-integration with a view towards applications in survival analysis, Ann. Statist.6 (1990) 1501-1555. Zbl0718.60087MR1074422
  16. [16] M.G. Gu and T.L. Lai, Functional laws of the iterated logarithm for the product-limit estimator of a distribution function under random censorship or truncation, Ann. Probab.18 (1) (1990) 160-189. Zbl0705.62040MR1043942
  17. [17] H.J. Hall and J.A. Wellner, Confidence bands for a survival curve from censored data, Biometrika67 (1980) 133-143. Zbl0423.62078MR570515
  18. [18] E.L. Kaplan and P. Meier, Non-parametric estimation from incomplete observations, J. Amer. Statist. Assoc.53 (1958) 562-563, 897-919. MR93867
  19. [19] P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann. Probab.18 (3) (1990) 1269-1283. Zbl0713.62021MR1062069
  20. [20] M. Ossiander, A central limit theorem under metric entropy with L2 bracketing, Ann. Probab.15 (1987) 897-919. Zbl0665.60036MR893905
  21. [21] G.R. Shorack and J.A. Wellner, Empirical Process with Applications to Statistics, Wiley, New York, 1986. Zbl1170.62365MR838963
  22. [22] W. Stute, Strong and weak representations of cumulative hazard function and Kaplan-Meier estimators on increasing sets, J. Statist. Planning and Inference42 (1994) 315-329. Zbl0815.62016MR1309627
  23. [23] W. Stute and J.L. Wang, The strong law under random censorship, Ann. Statist.21 (3) (1993) 1591-1607. Zbl0785.60020MR1241280
  24. [24] S. Van De Geer, Hellinger consistency of certain nonparametric maximum likelihood estimators, Ann. Statist.21 (1) (1993) 14-44. Zbl0779.62033MR1212164
  25. [25] M.J. Van Der Laan, Efficient and inefficient estimation in semiparametric models, Ph.D. Thesis, Department of Mathematics, University of Utrecht, the Netherlands, 1993. 
  26. [26] M.J. Van Der Laan, Proving efficiency of NPMLE and identities, Technical Report 44, Group in Biostatistics, University of California, Berkeley, CA 94720, 1994. 
  27. [27] J.G. Wang, A note on the uniform consistency of the Kaplan-Meier estimator, Ann. Statist.15 (1987) 1313-1316. Zbl0631.62043MR902260

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.