Mesures quasi-Bernoulli au sens faible : résultats et exemples
Annales de l'I.H.P. Probabilités et statistiques (2006)
- Volume: 42, Issue: 1, page 1-35
- ISSN: 0246-0203
Access Full Article
topHow to cite
topTestud, Benoît. "Mesures quasi-Bernoulli au sens faible : résultats et exemples." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 1-35. <http://eudml.org/doc/77885>.
@article{Testud2006,
author = {Testud, Benoît},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Quasi-Bernoulli measure; Gibbs measure; Self similar measure; Self affine measure; Hausdorff dimension; Tricot dimension; Multifractal analysis},
language = {fre},
number = {1},
pages = {1-35},
publisher = {Elsevier},
title = {Mesures quasi-Bernoulli au sens faible : résultats et exemples},
url = {http://eudml.org/doc/77885},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Testud, Benoît
TI - Mesures quasi-Bernoulli au sens faible : résultats et exemples
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 1
EP - 35
LA - fre
KW - Quasi-Bernoulli measure; Gibbs measure; Self similar measure; Self affine measure; Hausdorff dimension; Tricot dimension; Multifractal analysis
UR - http://eudml.org/doc/77885
ER -
References
top- [1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. Zbl0141.16702MR192027
- [2] F. BenNasr, Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math.319 (1994) 807-810. Zbl0815.28005MR1300947
- [3] F. BenNasr, I. Bhouri, Spectre multifractal de mesures boréliennes sur , C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 253-256. Zbl0885.28006MR1464815
- [4] F. BenNasr, I. Bhouri, Y. Heurteaux, The validity of the multifractal formalism : results and examples, Adv. in Math.165 (2002) 264-284. Zbl1020.28005MR1887585
- [5] G. Brown, G. Michon, J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys.66 (1992) 775-790. Zbl0892.28006MR1151978
- [6] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990. Zbl0871.28009MR1102677
- [7] K. Falconer, Techniques in Fractal Geometry, Wiley, New York, 1997. Zbl0869.28003MR1449135
- [8] A.H. Fan, Sur la dimension inférieure des mesures, Studia Math.111 (1994) 1-17. MR1292850
- [9] D.J. Feng, The smoothness of -spectrum of self-similar measures with overlaps, J. London Math. Soc.68 (2003) 102-118. Zbl1041.28004MR1980246
- [10] D.J. Feng, K.S. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett.9 (2002) 363-378. Zbl1116.37302MR1909650
- [11] D.J. Feng, K.S. Lau, Differentiability of pressure functions for products of non-negative matrices, preprint. Zbl1201.37069MR1909650
- [12] Y. Heurteaux, Sur la comparaison des mesures avec les mesures de Hausdorff, C. R Acad. Sci. Paris Sér. I Math.321 (1995) 61-65. Zbl0843.28001MR1340083
- [13] Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist.34 (1998) 309-338. Zbl0903.28005MR1625871
- [14] Y. Heurteaux, Weierstrass function with random phases, Trans. Amer. Math. Soc.335 (2003) 3065-3077. Zbl1031.26009MR1974675
- [15] J.E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J.30 (1981) 713-747. Zbl0598.28011MR625600
- [16] R. Kenyon, Y. Peres, Hausdorff dimension of Sofic affine-invariant sets, Israel J. Math.94 (1996) 127-138. Zbl1075.37503MR1394572
- [17] K.S. Lau, S.M. Ngai, -spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math.131 (1998) 225-251. Zbl0929.28005MR1644468
- [18] K.S. Lau, S.M. Ngai, Multifractal measures and a weak separation condition, Adv. in Math.141 (1999) 45-96. Zbl0929.28007MR1667146
- [19] G. Michon, Mesures de Gibbs sur les Cantor réguliers, Ann. Inst. H. Poincaré Phys. Théor.58 (1983) 267-285. Zbl0784.60097MR1222943
- [20] C. McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J.96 (1984) 1-9. Zbl0539.28003MR771063
- [21] S.M. Ngai, A dimension result arising from the -spectrum of a measure, Proc. Amer. Math. Soc.125 (1997) 2943-2951. Zbl0886.28006MR1402878
- [22] S.M. Ngai, Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc.63 (2001) 655-672. Zbl1013.28008MR1825981
- [23] E. Olivier, Communication privée.
- [24] L. Olsen, A multifractal formalism, Adv. in Math.116 (1995) 82-196. Zbl0841.28012MR1361481
- [25] J. Peyrière, Multifractal measures, in: Proc. NATO Adv. Study Inst. Il Ciocco, vol. 372, 1997, pp. 175-186. MR1187311
- [26] F. Przytycki, M. Urbański, On Hausdorff dimension of some fractal sets, Studia Math.93 (1989) 155-186. Zbl0691.58029MR1002918
- [27] M. Tamashiro, Dimensions in a separable metric space, Kyushu J. Math.49 (1995) 143-162. Zbl0905.54023MR1339704
- [28] B. Testud, Thèse de doctorat, Université Blaise Pascal, Clermont-Ferrand, 2004.
- [29] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc.91 (1982) 57-74. Zbl0483.28010MR633256
- [30] M. Urbański, The Hausdorff dimension of the graphs of continuous self-affine functions, Proc. Amer. Math. Soc.108 (1990) 921-930. Zbl0721.28004MR1000169
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.