Mesures quasi-Bernoulli au sens faible : résultats et exemples

Benoît Testud

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 1, page 1-35
  • ISSN: 0246-0203

How to cite

top

Testud, Benoît. "Mesures quasi-Bernoulli au sens faible : résultats et exemples." Annales de l'I.H.P. Probabilités et statistiques 42.1 (2006): 1-35. <http://eudml.org/doc/77885>.

@article{Testud2006,
author = {Testud, Benoît},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Quasi-Bernoulli measure; Gibbs measure; Self similar measure; Self affine measure; Hausdorff dimension; Tricot dimension; Multifractal analysis},
language = {fre},
number = {1},
pages = {1-35},
publisher = {Elsevier},
title = {Mesures quasi-Bernoulli au sens faible : résultats et exemples},
url = {http://eudml.org/doc/77885},
volume = {42},
year = {2006},
}

TY - JOUR
AU - Testud, Benoît
TI - Mesures quasi-Bernoulli au sens faible : résultats et exemples
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 1
SP - 1
EP - 35
LA - fre
KW - Quasi-Bernoulli measure; Gibbs measure; Self similar measure; Self affine measure; Hausdorff dimension; Tricot dimension; Multifractal analysis
UR - http://eudml.org/doc/77885
ER -

References

top
  1. [1] P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965. Zbl0141.16702MR192027
  2. [2] F. BenNasr, Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math.319 (1994) 807-810. Zbl0815.28005MR1300947
  3. [3] F. BenNasr, I. Bhouri, Spectre multifractal de mesures boréliennes sur R d , C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 253-256. Zbl0885.28006MR1464815
  4. [4] F. BenNasr, I. Bhouri, Y. Heurteaux, The validity of the multifractal formalism : results and examples, Adv. in Math.165 (2002) 264-284. Zbl1020.28005MR1887585
  5. [5] G. Brown, G. Michon, J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys.66 (1992) 775-790. Zbl0892.28006MR1151978
  6. [6] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990. Zbl0871.28009MR1102677
  7. [7] K. Falconer, Techniques in Fractal Geometry, Wiley, New York, 1997. Zbl0869.28003MR1449135
  8. [8] A.H. Fan, Sur la dimension inférieure des mesures, Studia Math.111 (1994) 1-17. MR1292850
  9. [9] D.J. Feng, The smoothness of L q -spectrum of self-similar measures with overlaps, J. London Math. Soc.68 (2003) 102-118. Zbl1041.28004MR1980246
  10. [10] D.J. Feng, K.S. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett.9 (2002) 363-378. Zbl1116.37302MR1909650
  11. [11] D.J. Feng, K.S. Lau, Differentiability of pressure functions for products of non-negative matrices, preprint. Zbl1201.37069MR1909650
  12. [12] Y. Heurteaux, Sur la comparaison des mesures avec les mesures de Hausdorff, C. R Acad. Sci. Paris Sér. I Math.321 (1995) 61-65. Zbl0843.28001MR1340083
  13. [13] Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist.34 (1998) 309-338. Zbl0903.28005MR1625871
  14. [14] Y. Heurteaux, Weierstrass function with random phases, Trans. Amer. Math. Soc.335 (2003) 3065-3077. Zbl1031.26009MR1974675
  15. [15] J.E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J.30 (1981) 713-747. Zbl0598.28011MR625600
  16. [16] R. Kenyon, Y. Peres, Hausdorff dimension of Sofic affine-invariant sets, Israel J. Math.94 (1996) 127-138. Zbl1075.37503MR1394572
  17. [17] K.S. Lau, S.M. Ngai, L q -spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math.131 (1998) 225-251. Zbl0929.28005MR1644468
  18. [18] K.S. Lau, S.M. Ngai, Multifractal measures and a weak separation condition, Adv. in Math.141 (1999) 45-96. Zbl0929.28007MR1667146
  19. [19] G. Michon, Mesures de Gibbs sur les Cantor réguliers, Ann. Inst. H. Poincaré Phys. Théor.58 (1983) 267-285. Zbl0784.60097MR1222943
  20. [20] C. McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J.96 (1984) 1-9. Zbl0539.28003MR771063
  21. [21] S.M. Ngai, A dimension result arising from the L q -spectrum of a measure, Proc. Amer. Math. Soc.125 (1997) 2943-2951. Zbl0886.28006MR1402878
  22. [22] S.M. Ngai, Y. Wang, Hausdorff dimension of self-similar sets with overlaps, J. London Math. Soc.63 (2001) 655-672. Zbl1013.28008MR1825981
  23. [23] E. Olivier, Communication privée. 
  24. [24] L. Olsen, A multifractal formalism, Adv. in Math.116 (1995) 82-196. Zbl0841.28012MR1361481
  25. [25] J. Peyrière, Multifractal measures, in: Proc. NATO Adv. Study Inst. Il Ciocco, vol. 372, 1997, pp. 175-186. MR1187311
  26. [26] F. Przytycki, M. Urbański, On Hausdorff dimension of some fractal sets, Studia Math.93 (1989) 155-186. Zbl0691.58029MR1002918
  27. [27] M. Tamashiro, Dimensions in a separable metric space, Kyushu J. Math.49 (1995) 143-162. Zbl0905.54023MR1339704
  28. [28] B. Testud, Thèse de doctorat, Université Blaise Pascal, Clermont-Ferrand, 2004. 
  29. [29] C. Tricot, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc.91 (1982) 57-74. Zbl0483.28010MR633256
  30. [30] M. Urbański, The Hausdorff dimension of the graphs of continuous self-affine functions, Proc. Amer. Math. Soc.108 (1990) 921-930. Zbl0721.28004MR1000169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.