The compact support property for measure-valued processes
János Engländer, Ross G. Pinsky (2006)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
János Engländer, Ross G. Pinsky (2006)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
János Engländer (2009)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
In previous work of D. Turaev, A. Winter and the author, the Law of Large Numbers for the local mass of certain superdiffusions was proved under an ergodicity assumption. In this paper we go beyond ergodicity, that is we consider cases when the scaling for the expectation of the local mass is not purely exponential. , we prove the analog of the Watanabe–Biggins LLN for super-brownian motion.
Dimitrios Cheliotis (2006)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Engländer, János (2007)
Probability Surveys [electronic only]
Similarity:
Nicolas Fournier, Bernard Roynette (2003)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Rémi Rhodes (2008)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We study the long time behavior (homogenization) of a diffusion in random medium with time and space dependent coefficients. The diffusion coefficient may degenerate. In (2007) (to appear), an invariance principle is proved for the critical rescaling of the diffusion. Here, we generalize this approach to diffusions whose space-time scaling differs from the critical one.