Spatially heteroclinic solutions for a semilinear elliptic P.D.E.
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 8, page 915-931
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topRabinowitz, Paul H.. "Spatially heteroclinic solutions for a semilinear elliptic P.D.E.." ESAIM: Control, Optimisation and Calculus of Variations 8 (2010): 915-931. <http://eudml.org/doc/90678>.
@article{Rabinowitz2010,
abstract = {
This paper uses minimization methods and renormalized
functionals to find spatially heteroclinic solutions for some classes
of semilinear elliptic partial differential equations
},
author = {Rabinowitz, Paul H.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Spatially heteroclinic solutions; minimization methods;
renormalized functional.; spatially heteroclinic solutions; renormalized functional},
language = {eng},
month = {3},
pages = {915-931},
publisher = {EDP Sciences},
title = {Spatially heteroclinic solutions for a semilinear elliptic P.D.E.},
url = {http://eudml.org/doc/90678},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Rabinowitz, Paul H.
TI - Spatially heteroclinic solutions for a semilinear elliptic P.D.E.
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 8
SP - 915
EP - 931
AB -
This paper uses minimization methods and renormalized
functionals to find spatially heteroclinic solutions for some classes
of semilinear elliptic partial differential equations
LA - eng
KW - Spatially heteroclinic solutions; minimization methods;
renormalized functional.; spatially heteroclinic solutions; renormalized functional
UR - http://eudml.org/doc/90678
ER -
References
top- V. Bangert, On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal. Non Linéaire6 (1989) 95-138.
- E. Bosetto and E. Serra, A variational approach to chaotic dynamics in periodically forced nonlinear oscillators. Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2000) 673-709.
- K. Kirchgässner, Wave-solutions of reversible systems and applications. J. Differential Equations45 (1982) 113-127.
- A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math. Mech. Appl. Sci.10 (1988) 51-66.
- J.K. Moser, Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 229-272.
- P.H. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations. J. Fac. Sci. Univ. Tokyo1 (1994) 525-550.
- P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation. Comm. Pure Appl. Math. (to appear).
- R.E.L. Turner, Internal waves in fluids with rapidly varying density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 48 (1981) 513-573.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.