Morse index properties of colliding solutions to the N-body problem
Vivina Barutello; Simone Secchi
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 3, page 539-565
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBarutello, Vivina, and Secchi, Simone. "Morse index properties of colliding solutions to the N-body problem." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 539-565. <http://eudml.org/doc/78800>.
@article{Barutello2008,
author = {Barutello, Vivina, Secchi, Simone},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variational index; non-minimality; singular Hamiltonian system},
language = {eng},
number = {3},
pages = {539-565},
publisher = {Elsevier},
title = {Morse index properties of colliding solutions to the N-body problem},
url = {http://eudml.org/doc/78800},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Barutello, Vivina
AU - Secchi, Simone
TI - Morse index properties of colliding solutions to the N-body problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 539
EP - 565
LA - eng
KW - variational index; non-minimality; singular Hamiltonian system
UR - http://eudml.org/doc/78800
ER -
References
top- [1] Amann H., Ordinary Differential Equations. An Introduction to Nonlinear Analysis, De Gruyter Studies in Mathematics, vol. 13, W. de Gruyter, 1990. Zbl0708.34002MR1071170
- [2] Ambrosetti A., Coti Zelati V., Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations and their Appl., vol. 10, Birkhäuser Boston Inc., Boston, MA, 1993. Zbl0785.34032MR1267225
- [3] Bahri A., Rabinowitz P.H., Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (6) (1991) 561-649. Zbl0745.34034MR1145561
- [4] Barutello V., On the n-body problem, Ph.D. thesis, Università di Milano-Bicocca, Milano 2004. Available on-line at, http://www.matapp.unimib.it/.
- [5] Barutello V., Ferrario D.L., Terracini S., On the singularities of generalized solutions to the n-body problem, Preprint, 2006. Available on arXiv:, math.DS/0701174.
- [6] Chenciner A., Venturelli A., Minima de l’intégrale d’action du problème Newtonien de 4 corps de masses égales dans : orbites “hip-hop”, Celestial Mech. Dynam. Astronom.77 (2000) 139-152. Zbl0984.70009MR1820355
- [7] Coti Zelati V., A class of periodic solutions of the N-body problem, Celestial Mech. Dynam. Astronom.46 (2) (1989) 177-186. Zbl0684.70006MR1044425
- [8] Coti Zelati V., Periodic solutions for N-body type problem, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (5) (1990) 477-492. Zbl0723.70010MR1138534
- [9] Coti Zelati V., Serra E., Collision and non-collision solutions for a class of Keplerian-like dynamical systems, Ann. Mat. Pura Appl. (4)166 (1994) 343-362. Zbl0832.70009MR1313812
- [10] Dell'Antonio G., Non-collision periodic solutions of the N-body system, NoDEA, Nonlinear Differential Equations Appl.5 (1998) 117-136. Zbl0897.70007MR1600511
- [11] Ferrario D.L., Terracini S., On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math.155 (2) (2004) 305-362. Zbl1068.70013MR2031430
- [12] Gordon W., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc.204 (1975) 113-135. Zbl0276.58005MR377983
- [13] Hampton M., Moeckel R., Finiteness of relative equilibria of the four-body problem, Invent. Math.163 (2) (2006) 289-312. Zbl1083.70012MR2207019
- [14] McGehee R., Triple collision in the collinear three-body problem, Invent. Math.27 (1974) 191-227. Zbl0297.70011MR359459
- [15] Moeckel R., On central configurations, Math. Z.205 4 (1990) 499-517. Zbl0684.70005MR1082871
- [16] Pacella F., Central configurations and the equivariant Morse theory, Arch. Ration. Mech. Anal.97 (1987) 59-74. Zbl0627.58013MR856309
- [17] Painlevé P., Leçons sur la théorie analytique des équations différentielles, Hermann, Paris, 1897.
- [18] Pollard H., Celestial Mechanics, Carus Mathematical Monographs, vol. 18, Mathematical Association of America, 1976. Zbl0353.70009MR434057
- [19] Riahi H., Study of the generalized solutions of n-body type problems with weak force, Nonlinear Anal.28 (1) (1997) 49-59. Zbl0914.70007MR1416033
- [20] Serra E., Avoiding collisions in singular potential problems, in: Variational Methods in Nonlinear Analysis, Erice, 1992, Gordon and Breach, Basel, 1995, pp. 173-185. Zbl0845.34048MR1451160
- [21] Serra E., Terracini S., Collisionless periodic solutions to some three-body problems, Arch. Ration. Mech. Anal.120 (4) (1992) 305-325. Zbl0773.70009MR1185563
- [22] Serra E., Terracini S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal.22 (1) (1994) 45-62. Zbl0813.70006MR1256169
- [23] Shub M., Diagonal and Relative Equilibria, Lecture Notes in Math., vol. 197, Springer, Berlin, 1971. MR278700
- [24] Sperling H.J., On the real singularities of the N-body problem, J. Reine Angew. Math.245 (1970) 15-40. Zbl0207.23301MR290630
- [25] Sundman K.F., Mémoire sur le problème des trois corps, Acta Math.36 (1913) 105-179. Zbl43.0826.01MR1555085JFM43.0826.01
- [26] Tanaka K., Non-collision solutions for a second order singular Hamiltonian system with weak force, Ann. Inst. H. Poincaré10 (2) (1993) 215-238. Zbl0781.58036MR1220034
- [27] Terracini S., Venturelli A., Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration Mech. Anal.184 (2007) 465-493. Zbl1111.70010MR2299759
- [28] Wintner A., The Analytical Foundation of Celestial Mechanics, Princeton University Press, Princeton, NJ, 1941. Zbl0026.02302MR5824JFM67.0785.01
- [29] von Zeipel H., Sur les singularités du problème des n corps, Ark. Math. Astr. Fys.4 (32) (1908). Zbl39.0792.14JFM39.0792.14
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.