Morse index properties of colliding solutions to the N-body problem

Vivina Barutello; Simone Secchi

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 3, page 539-565
  • ISSN: 0294-1449

How to cite

top

Barutello, Vivina, and Secchi, Simone. "Morse index properties of colliding solutions to the N-body problem." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 539-565. <http://eudml.org/doc/78800>.

@article{Barutello2008,
author = {Barutello, Vivina, Secchi, Simone},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {variational index; non-minimality; singular Hamiltonian system},
language = {eng},
number = {3},
pages = {539-565},
publisher = {Elsevier},
title = {Morse index properties of colliding solutions to the N-body problem},
url = {http://eudml.org/doc/78800},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Barutello, Vivina
AU - Secchi, Simone
TI - Morse index properties of colliding solutions to the N-body problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 539
EP - 565
LA - eng
KW - variational index; non-minimality; singular Hamiltonian system
UR - http://eudml.org/doc/78800
ER -

References

top
  1. [1] Amann H., Ordinary Differential Equations. An Introduction to Nonlinear Analysis, De Gruyter Studies in Mathematics, vol. 13, W. de Gruyter, 1990. Zbl0708.34002MR1071170
  2. [2] Ambrosetti A., Coti Zelati V., Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations and their Appl., vol. 10, Birkhäuser Boston Inc., Boston, MA, 1993. Zbl0785.34032MR1267225
  3. [3] Bahri A., Rabinowitz P.H., Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (6) (1991) 561-649. Zbl0745.34034MR1145561
  4. [4] Barutello V., On the n-body problem, Ph.D. thesis, Università di Milano-Bicocca, Milano 2004. Available on-line at, http://www.matapp.unimib.it/. 
  5. [5] Barutello V., Ferrario D.L., Terracini S., On the singularities of generalized solutions to the n-body problem, Preprint, 2006. Available on arXiv:, math.DS/0701174. 
  6. [6] Chenciner A., Venturelli A., Minima de l’intégrale d’action du problème Newtonien de 4 corps de masses égales dans R 3 : orbites “hip-hop”, Celestial Mech. Dynam. Astronom.77 (2000) 139-152. Zbl0984.70009MR1820355
  7. [7] Coti Zelati V., A class of periodic solutions of the N-body problem, Celestial Mech. Dynam. Astronom.46 (2) (1989) 177-186. Zbl0684.70006MR1044425
  8. [8] Coti Zelati V., Periodic solutions for N-body type problem, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (5) (1990) 477-492. Zbl0723.70010MR1138534
  9. [9] Coti Zelati V., Serra E., Collision and non-collision solutions for a class of Keplerian-like dynamical systems, Ann. Mat. Pura Appl. (4)166 (1994) 343-362. Zbl0832.70009MR1313812
  10. [10] Dell'Antonio G., Non-collision periodic solutions of the N-body system, NoDEA, Nonlinear Differential Equations Appl.5 (1998) 117-136. Zbl0897.70007MR1600511
  11. [11] Ferrario D.L., Terracini S., On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math.155 (2) (2004) 305-362. Zbl1068.70013MR2031430
  12. [12] Gordon W., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc.204 (1975) 113-135. Zbl0276.58005MR377983
  13. [13] Hampton M., Moeckel R., Finiteness of relative equilibria of the four-body problem, Invent. Math.163 (2) (2006) 289-312. Zbl1083.70012MR2207019
  14. [14] McGehee R., Triple collision in the collinear three-body problem, Invent. Math.27 (1974) 191-227. Zbl0297.70011MR359459
  15. [15] Moeckel R., On central configurations, Math. Z.205 4 (1990) 499-517. Zbl0684.70005MR1082871
  16. [16] Pacella F., Central configurations and the equivariant Morse theory, Arch. Ration. Mech. Anal.97 (1987) 59-74. Zbl0627.58013MR856309
  17. [17] Painlevé P., Leçons sur la théorie analytique des équations différentielles, Hermann, Paris, 1897. 
  18. [18] Pollard H., Celestial Mechanics, Carus Mathematical Monographs, vol. 18, Mathematical Association of America, 1976. Zbl0353.70009MR434057
  19. [19] Riahi H., Study of the generalized solutions of n-body type problems with weak force, Nonlinear Anal.28 (1) (1997) 49-59. Zbl0914.70007MR1416033
  20. [20] Serra E., Avoiding collisions in singular potential problems, in: Variational Methods in Nonlinear Analysis, Erice, 1992, Gordon and Breach, Basel, 1995, pp. 173-185. Zbl0845.34048MR1451160
  21. [21] Serra E., Terracini S., Collisionless periodic solutions to some three-body problems, Arch. Ration. Mech. Anal.120 (4) (1992) 305-325. Zbl0773.70009MR1185563
  22. [22] Serra E., Terracini S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal.22 (1) (1994) 45-62. Zbl0813.70006MR1256169
  23. [23] Shub M., Diagonal and Relative Equilibria, Lecture Notes in Math., vol. 197, Springer, Berlin, 1971. MR278700
  24. [24] Sperling H.J., On the real singularities of the N-body problem, J. Reine Angew. Math.245 (1970) 15-40. Zbl0207.23301MR290630
  25. [25] Sundman K.F., Mémoire sur le problème des trois corps, Acta Math.36 (1913) 105-179. Zbl43.0826.01MR1555085JFM43.0826.01
  26. [26] Tanaka K., Non-collision solutions for a second order singular Hamiltonian system with weak force, Ann. Inst. H. Poincaré10 (2) (1993) 215-238. Zbl0781.58036MR1220034
  27. [27] Terracini S., Venturelli A., Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration Mech. Anal.184 (2007) 465-493. Zbl1111.70010MR2299759
  28. [28] Wintner A., The Analytical Foundation of Celestial Mechanics, Princeton University Press, Princeton, NJ, 1941. Zbl0026.02302MR5824JFM67.0785.01
  29. [29] von Zeipel H., Sur les singularités du problème des n corps, Ark. Math. Astr. Fys.4 (32) (1908). Zbl39.0792.14JFM39.0792.14

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.