Periodic solutions with prescribed energy for some keplerian -body problems

Antonio Ambrosetti; Kazunaga Tanaka; Enzo Vitillaro

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 6, page 613-632
  • ISSN: 0294-1449

How to cite

top

Ambrosetti, Antonio, Tanaka, Kazunaga, and Vitillaro, Enzo. "Periodic solutions with prescribed energy for some keplerian $N$-body problems." Annales de l'I.H.P. Analyse non linéaire 11.6 (1994): 613-632. <http://eudml.org/doc/78345>.

@article{Ambrosetti1994,
author = {Ambrosetti, Antonio, Tanaka, Kazunaga, Vitillaro, Enzo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence; boundary conditions},
language = {eng},
number = {6},
pages = {613-632},
publisher = {Gauthier-Villars},
title = {Periodic solutions with prescribed energy for some keplerian $N$-body problems},
url = {http://eudml.org/doc/78345},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Ambrosetti, Antonio
AU - Tanaka, Kazunaga
AU - Vitillaro, Enzo
TI - Periodic solutions with prescribed energy for some keplerian $N$-body problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 6
SP - 613
EP - 632
LA - eng
KW - existence; boundary conditions
UR - http://eudml.org/doc/78345
ER -

References

top
  1. [1] A. Ambrosetti, V. CotiZELATI, Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Arch. Rat. Mech. Anal., Vol. 112, 1990, p. 339-362. Zbl0737.70008MR1077264
  2. [2] A. Ambrosetti, V. Coti Zelati, Closed Orbits of Fixed Energy for a Class of N-body Problems, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 9, 1992, p. 187-220; and Addendum, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 9, 1992, p. 337-338. Zbl0757.70007MR1160848
  3. [3] A. Ambrosetti, V. CotiZELATI, Periodic Solutions of Singular Lagrangian Systems, Birkhäuser, 1993. Zbl0785.34032MR1267225
  4. [4] A. Bahri, P.H. Rabinowitz, Periodic Solutions of Hamiltonian Systems of 3-body Type, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 8, 1991, p. 561-649. Zbl0745.34034MR1145561
  5. [5] V. Coti Zelati, Periodic Solutions for N-body Type Problems, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 7, 1990, p. 477-492. Zbl0723.70010MR1138534
  6. [6] P. Majer, Variational Methods on Manifolds with Boundary, Topology, to appear. Zbl0819.58003MR1308486
  7. [7] P. Majer, S. Terracini, Periodic Solutions to Some Problems of N-body Type, Arch Rat. Mech. Anal., to appear. Zbl0782.70010MR1240581
  8. [8] P. Majer, S. Terracini, Periodic Solutions to Some N-body Type Problems: the Fixed Energy Case, Duke Math. J., Vol. 69, 1993, p. 683-697. Zbl0807.70009MR1208817
  9. [9] H. Riahi, Periodic Orbits of N-body Type Problems, Ph. D. Thesis, Rutgers University, 1993. 
  10. [10] K. Tanaka, A prescribed Energy Problem for a Singular Hamiltonian System with a weak Force, J. Funct. Anal., Vol. 113, 1993, p. 351-390. Zbl0771.70014MR1218100

NotesEmbed ?

top

You must be logged in to post comments.