Periodic solutions with prescribed energy for some keplerian N -body problems

Antonio Ambrosetti; Kazunaga Tanaka; Enzo Vitillaro

Annales de l'I.H.P. Analyse non linéaire (1994)

  • Volume: 11, Issue: 6, page 613-632
  • ISSN: 0294-1449

How to cite

top

Ambrosetti, Antonio, Tanaka, Kazunaga, and Vitillaro, Enzo. "Periodic solutions with prescribed energy for some keplerian $N$-body problems." Annales de l'I.H.P. Analyse non linéaire 11.6 (1994): 613-632. <http://eudml.org/doc/78345>.

@article{Ambrosetti1994,
author = {Ambrosetti, Antonio, Tanaka, Kazunaga, Vitillaro, Enzo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {existence; boundary conditions},
language = {eng},
number = {6},
pages = {613-632},
publisher = {Gauthier-Villars},
title = {Periodic solutions with prescribed energy for some keplerian $N$-body problems},
url = {http://eudml.org/doc/78345},
volume = {11},
year = {1994},
}

TY - JOUR
AU - Ambrosetti, Antonio
AU - Tanaka, Kazunaga
AU - Vitillaro, Enzo
TI - Periodic solutions with prescribed energy for some keplerian $N$-body problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1994
PB - Gauthier-Villars
VL - 11
IS - 6
SP - 613
EP - 632
LA - eng
KW - existence; boundary conditions
UR - http://eudml.org/doc/78345
ER -

References

top
  1. [1] A. Ambrosetti, V. CotiZELATI, Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Arch. Rat. Mech. Anal., Vol. 112, 1990, p. 339-362. Zbl0737.70008MR1077264
  2. [2] A. Ambrosetti, V. Coti Zelati, Closed Orbits of Fixed Energy for a Class of N-body Problems, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 9, 1992, p. 187-220; and Addendum, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 9, 1992, p. 337-338. Zbl0757.70007MR1160848
  3. [3] A. Ambrosetti, V. CotiZELATI, Periodic Solutions of Singular Lagrangian Systems, Birkhäuser, 1993. Zbl0785.34032MR1267225
  4. [4] A. Bahri, P.H. Rabinowitz, Periodic Solutions of Hamiltonian Systems of 3-body Type, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 8, 1991, p. 561-649. Zbl0745.34034MR1145561
  5. [5] V. Coti Zelati, Periodic Solutions for N-body Type Problems, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 7, 1990, p. 477-492. Zbl0723.70010MR1138534
  6. [6] P. Majer, Variational Methods on Manifolds with Boundary, Topology, to appear. Zbl0819.58003MR1308486
  7. [7] P. Majer, S. Terracini, Periodic Solutions to Some Problems of N-body Type, Arch Rat. Mech. Anal., to appear. Zbl0782.70010MR1240581
  8. [8] P. Majer, S. Terracini, Periodic Solutions to Some N-body Type Problems: the Fixed Energy Case, Duke Math. J., Vol. 69, 1993, p. 683-697. Zbl0807.70009MR1208817
  9. [9] H. Riahi, Periodic Orbits of N-body Type Problems, Ph. D. Thesis, Rutgers University, 1993. 
  10. [10] K. Tanaka, A prescribed Energy Problem for a Singular Hamiltonian System with a weak Force, J. Funct. Anal., Vol. 113, 1993, p. 351-390. Zbl0771.70014MR1218100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.