On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two

Jean Dolbeault; Régis Monneau

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)

  • Volume: 2, Issue: 1, page 181-197
  • ISSN: 0391-173X

Abstract

top
In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in 2 . We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.

How to cite

top

Dolbeault, Jean, and Monneau, Régis. "On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.1 (2003): 181-197. <http://eudml.org/doc/84495>.

@article{Dolbeault2003,
abstract = {In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in $\mathbb \{R\}^2$. We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.},
author = {Dolbeault, Jean, Monneau, Régis},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1},
pages = {181-197},
publisher = {Scuola normale superiore},
title = {On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two},
url = {http://eudml.org/doc/84495},
volume = {2},
year = {2003},
}

TY - JOUR
AU - Dolbeault, Jean
AU - Monneau, Régis
TI - On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 1
SP - 181
EP - 197
AB - In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in $\mathbb {R}^2$. We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.
LA - eng
UR - http://eudml.org/doc/84495
ER -

References

top
  1. [1] S. Alama – L. Bronsard – C. Gui, Stationary layered solutions in n for an Allen-Cahn system with multiple well potential, Calc. Var. Partial Differential Equations 5 (1997), 359-390. Zbl0883.35036MR1450716
  2. [2] G. Alberti – L. Ambrosio – X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math. 65 (2001), 9-33. Zbl1121.35312MR1843784
  3. [3] L. Ambrosio – X. Cabré, Entire solutions of semilinear elliptic equations in n and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), 725-739. Zbl0968.35041MR1775735
  4. [4] S.B. Angenent, Uniqueness of the solution of a semilinear boundary value problem, Math. Ann. 272 (1985), 129-138. Zbl0576.35044MR794096
  5. [5] M.T. Barlow, On the Liouville property for divergence form operators, Canad. J. Math. 50 (1998), 487-496. Zbl0912.31004MR1629807
  6. [6] M.T. Barlow – R. Bass – C. Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), 1007-1038. Zbl1072.35526MR1755949
  7. [7] H. Berestycki – L. Caffarelli – L. Nirenberg, Symmetry for elliptic equations in a half space, in “Boundary value problems for partial differential equations and applications", J.-L. Lions et al. (eds.), RMA Res. Notes Appl. Math., Masson, Paris, 1993, pp. 27-42. Zbl0793.35034MR1260436
  8. [8] H. Berestycki – L. Caffarelli – L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50 (1997), 1089-1111. Zbl0906.35035MR1470317
  9. [9] H. Berestycki – L. Caffarelli – L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, (4) (1997), 69-94. Zbl1079.35513MR1655510
  10. [10] H. Berestycki – L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat. 22 (1991), 1-37. Zbl0784.35025MR1159383
  11. [11] H. Berestycki – F. Hamel – R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Mathematical Journal 103, (3) (2000), 375-396. Zbl0954.35056MR1763653
  12. [12] S. Bernstein, Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom ellipschen Typus, Math. Zeit. 26, 551-558 (1927), translation of the original version: Comm. de la Soc. Math. de Kharkov 2ème sér. [Zap. Harkov. Mat. Obsc. (2)] 15 (1915-1917), 38-45. Zbl53.0670.01MR1544873JFM53.0670.01
  13. [13] E. Bombieri – E. De Giorgi – E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243-268. Zbl0183.25901MR250205
  14. [14] X. Cabré, A conjecture of De Giorgi on symmetry for elliptic equations in n , European Congress of Mathematics, Vol. I (Barcelona, 2000), 259–265, Progr. Math., 201, Birkhäuser, Basel, (2001). Zbl1101.35030MR1905323
  15. [15] L. A. Caffarelli – A. Cordoba, Uniform convergence of a singular perturbation Problem, Comm. Pure Appl. Math. 48 (1995), 1-12. Zbl0829.49013MR1310848
  16. [16] L. A. Caffarelli – A. Cordoba, Phase transition: uniform regularity of the transition layers, preprint (2001). 
  17. [17] L. Caffarelli – N. Garofalo – F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math. 47 (1994), 1457-1473. Zbl0819.35016MR1296785
  18. [18] D. Danielli – N. Garofalo, Properties of entire solutions of non-uniformly elliptic equations arising in geometry and in phase transitions, Calc. Var. Partial Differential Equations 15 (2002), 451-491. Zbl1043.49018MR1942128
  19. [19] E. De Giorgi, Convergence problems for functionals and operators, in “Proc. Int. Meeting on Recent Methods in Nonlinear Analysis", Rome, 1978, E. De Giorgi et al. (eds.), Pitagora, Bologna, 1979, pp. 131-188. Zbl0405.49001MR533166
  20. [20] J. Dolbeault – R. Monneau, Convexity estimates for nonlinear elliptic equations and application to free boundary problems [Estimations de convexité pour des équations elliptiques non-linéaires et application à des problèmes de frontière libre], C. R. Acad. Sci., Paris, Sér. I. Math. 331 (2000), 771-776. Zbl0965.35066MR1807187
  21. [21] J. Dolbeault – R. Monneau, Convexity estimates for nonlinear elliptic equations and application to free boundary problems, Ann. Inst. Henri Poincaré Anal. Non Linéaire 19 (2002), 903-926. Zbl1034.35047MR1939090
  22. [22] A. Farina, Some remarks on a conjecture of De Giorgi, Calc. Var. Partial Differential Equations 8 (3) (1999), 233-245. Zbl0938.35057MR1688549
  23. [23] A. Farina, Symmetry for solutions of semilinear elliptic equations in n and related conjectures, Ricerche Mat. 48 (1999), 129-154. Zbl0940.35084MR1765681
  24. [24] A. Farina, One-dimensional symmetry for solutions of quasilinear equations in 2 , to appear in Bol. Un. Mat. Ital. (2002). Zbl1115.35045MR2014827
  25. [25] A. Farina, Propriétés de monotonie et de symétrie unidimensionnelle pour les solutions de Δ u + f ( u ) = 0 avec des fonctions f éventuellement discontinues[Monotonicity and one-dimensional symmetry for the solutions of Δ u + f ( u ) = 0 with possibly discontinuous nonlinearity], C. R. Acad. Sci., Paris, Sér. I. Math. 330 (2000), 973-978. Zbl0955.35021MR1779689
  26. [26] A. Farina, Monotonicity and one-dimensional symmetry for the solutions of Δ u + f ( u ) = 0 in N with possibly discontinuous nonlinearity, Adv. Math. Sci. Appl. 11 (2001), 811-834. Zbl1029.35013MR1907468
  27. [27] A. Farina, Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of R N and in half spaces, to appear in Adv. Math. Sci. Appl. 13, (2003). Zbl1078.35036MR2002396
  28. [28] N. Ghoussoub – C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), 481-491. Zbl0918.35046MR1637919
  29. [29] N. Ghoussoub – C. Gui, On De Giorgi’s Conjecture in Dimensions 4 and 5, to appear in Ann. of Math. Zbl1165.35367MR1954269
  30. [30] E. Giusti, “Minimal surfaces and functions of bounded variation”, Birkhäuser Verlag, Basel, Boston, 1984. Zbl0545.49018MR775682
  31. [31] D. Jerison – R. Monneau, The existence of a symmetric global minimizer on n - 1 implies the existence of a counter-example to a conjecture of De Giorgi in n [L’existence d’un minimiseur global symétrique sur n - 1 implique l’existence d’un contre-exemple à une conjecture de De Giorgi dans n ], C. R. Acad. Sci., Paris, Sér. I Math. 333 (2001), 427-431. Zbl1014.35037MR1859231
  32. [32] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math. 38 (1985), 679-684. Zbl0612.35051MR803255
  33. [33] L. Modica, Monotonicity of the energy for entire solutions of semilinear elliptic equations, “Partial differential equations and the calculus of variations", Vol. II, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser, Boston, 1989, pp. 843-850. Zbl0699.35082MR1034031
  34. [34] L. Modica – S. Mortola, Some entire solutions in the plane of nonlinear Poisson equations, Boll. Un. Mat. Ital. 5 (1980), 614-622. Zbl0448.35044MR580544
  35. [35] C.B. Morrey, “Multiple integrals in the caculus of variations”, Springer-Verlag, Berlin, Heidelberg, New-York, 1966. Zbl0142.38701MR202511
  36. [36] L. Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity, Comm. Pure Appl. Math. 6 (1953), 103-156. Zbl0050.09801MR64986
  37. [37] J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. Anal. 43 (1971), 304-318. Zbl0222.31007MR333220
  38. [38] L. Simon, Entire solutions of the minimal surface equation, J. Differential Geom. 30 (1989), 643-688. Zbl0687.53009MR1021370
  39. [39] L. Simon, The minimal surface equation, “Geometry", V, 239-272, Encyclopaedia Math. Sci. 90, Springer, Berlin, 1997. Zbl0905.53003MR1490041
  40. [40] R.P. Sperb, “Maximum principles and their applications”, Mathematics in Science and Engineering, 157. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New-York, London, 1981. Zbl0454.35001MR615561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.