Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)

Bernard Helffer; Abderemane Morame

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 1, page 105-170
  • ISSN: 0012-9593

How to cite

top

Helffer, Bernard, and Morame, Abderemane. "Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)." Annales scientifiques de l'École Normale Supérieure 37.1 (2004): 105-170. <http://eudml.org/doc/82625>.

@article{Helffer2004,
author = {Helffer, Bernard, Morame, Abderemane},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {magnetic bottles; Ginzburg-Landau functional; Neumann condition; superconductivity},
language = {eng},
number = {1},
pages = {105-170},
publisher = {Elsevier},
title = {Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)},
url = {http://eudml.org/doc/82625},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Helffer, Bernard
AU - Morame, Abderemane
TI - Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 1
SP - 105
EP - 170
LA - eng
KW - magnetic bottles; Ginzburg-Landau functional; Neumann condition; superconductivity
UR - http://eudml.org/doc/82625
ER -

References

top
  1. [1] Agmon S., Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Math. Notes, vol. 29, Princeton University Press, 1982. Zbl0503.35001MR745286
  2. [2] Bauman P., Phillips D., Tang Q., Stable nucleation for the Ginzburg–Landau system with an applied magnetic field, IMA Preprint Series 1416 (1996) , Arch. Rational Mech. Anal.142 (1998) 1-43. Zbl0922.35157MR1629119
  3. [3] Bernoff A., Sternberg P., Onset of superconductivity in decreasing fields for general domains, J. Math. Phys.39 (1998) 1272-1284. Zbl1056.82523MR1608449
  4. [4] Bolley C., Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation, M26 (2) (1992) 235-287. Zbl0741.35085MR1153002
  5. [5] E.B. Davies, Spectral Theory and Differential Operators, in: Cambridge Studies in Advanced Mathematics. Zbl0893.47004
  6. [6] Dauge M., Helffer B., Eigenvalues variation I, Neumann problem for Sturm–Liouville operators, J. Differential Equations104 (2) (1993) 243-262. Zbl0784.34021MR1231468
  7. [7] Dierkes U., Hildebrandt S., Kuster A., Wohlrab O., Minimal Surfaces I, Springer-Verlag, Berlin, 1992. Zbl0777.53012MR1215267
  8. [8] Helffer B., Introduction to the Semiclassical Analysis for the Schrödinger Operator and Applications, Springer Lecture Notes in Math., vol. 1336, 1988. Zbl0647.35002MR960278
  9. [9] Helffer B., Semi-classical analysis for the Schrödinger operator with magnetic wells (after R. Montgomery, B. Helffer and A. Mohamed), in: Proceedings of the Conference in Minneapolis, IMA Volumes in Mathematics and its Applications, vol. 95, Springer-Verlag, 1997, pp. 99-114. Zbl0887.35131MR1477211
  10. [10] Helffer B., Bouteilles magnétiques et supraconductivité (d'après Helffer–Morame, Lu–Pan et Helffer–Pan), Séminaire EDP de l'École Polytechnique 2000–2001, Reprint , http://www.math.polytechnique.fr. Zbl1222.82086MR1860683
  11. [11] Helffer B., Mohamed A., Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal.138 (1) (1996) 40-81. Zbl0851.58046MR1391630
  12. [12] Helffer B., Morame A., Magnetic bottles in connection with superconductivity, J. Funct. Anal.185 (2) (2001) 604-680. Zbl1078.81023MR1856278
  13. [13] Helffer B., Morame A., Magnetic bottles in connection with superconductivity: Case of dimension 3, Proc. Indian Acad. Sci. (Math. Sci.)112 (1) (2002). Zbl1199.81016MR1894543
  14. [14] B. Helffer, A. Morame, Magnetic bottles for the Neumann problem: Curvature effects in the case of dimension 3, Preprint mp_arc 01-362, 2001. Zbl1057.35061MR1856278
  15. [15] B. Helffer, A. Morame, Magnetic bottles for the Neumann problem: Curvature effects in the case of dimension 3, general case, Preprint mp_arc 02-145, 2002. Zbl1199.81016
  16. [16] Helffer B., Nourrigat J., Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Mathematics, vol. 58, Birkhäuser, 1985. Zbl0568.35003MR897103
  17. [17] Helffer B., Pan X.-B., Upper critical field and location of surface nucleation of superconductivity, Annales de l'Institut Henri Poincaré (Analyse Non Linéaire)20 (1) (2003) 145-181. Zbl1060.35132MR1958165
  18. [18] Helffer B., Sjöstrand J., Multiple wells in the semiclassical limit I, Comm. PDE9 (4) (1984) 337-408. Zbl0546.35053MR740094
  19. [19] Lu K., Pan X.-B., Estimates of the upper critical field for the Ginzburg–Landau equations of superconductivity, Phys. D127 (1999) 73-104. Zbl0934.35174MR1678383
  20. [20] Lu K., Pan X.-B., Eigenvalue problems of Ginzburg–Landau operator in bounded domains, J. Math. Phys.40 (6) (1999) 2647-2670. Zbl0943.35058MR1694223
  21. [21] Lu K., Pan X.-B., Gauge invariant eigenvalue problems on R2 and R2+, Trans. Amer. Math. Soc.352 (3) (2000) 1247-1276. Zbl1053.35124MR1675206
  22. [22] Lu K., Pan X.-B., Ginzburg–Landau system and surface nucleation of superconductivity, in: Proceeding of the IMS Workshop on Reaction-Diffusion systems, Chinese University of Hong-Kong, 1999. 
  23. [23] Lu K., Pan X.-B., Surface nucleation of superconductivity in 3-dimension, J. Differential Equations168 (2) (2000) 386-452. Zbl0972.35152MR1808455
  24. [24] Montgomery R., Hearing the zerolocus of a magnetic field, Comm. Math. Phys.168 (1995) 651-675. Zbl0827.58076MR1328258
  25. [25] Pan X.-B., Upper critical field for superconductors with edges and corners, Calc. Var. PDE14 (2002) 447-482. Zbl1006.35090MR1911825
  26. [26] X.-B. Pan, Surface conductivity in 3 dimensions, Personal communication, October 2001, Unpublished. 
  27. [27] Pan X.-B., Kwek K.-H., Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domain, Trans. Amer. Math. Soc.354 (10) (2002) 4201-4227. Zbl1004.35110MR1926871
  28. [28] del Pino M., Felmer P.L., Sternberg P., Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys.210 (2000) 413-446. Zbl0982.35077MR1776839
  29. [29] Reed M., Simon B., Methods of modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
  30. [30] Saint-James D., Sarma G., Thomas E.J., Type II Superconductivity, Pergamon, Oxford, 1969. 
  31. [31] Spivak M., Differential Geometry, Publish or Perish, Houston, 1975. 
  32. [32] Thaller B., The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, 1992. Zbl0765.47023MR1219537

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.