On the Ginzburg–Landau model of a superconducting ball in a uniform field

Stan Alama; Lia Bronsard; J. Alberto Montero

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 2, page 237-267
  • ISSN: 0294-1449

How to cite

top

Alama, Stan, Bronsard, Lia, and Montero, J. Alberto. "On the Ginzburg–Landau model of a superconducting ball in a uniform field." Annales de l'I.H.P. Analyse non linéaire 23.2 (2006): 237-267. <http://eudml.org/doc/78691>.

@article{Alama2006,
author = {Alama, Stan, Bronsard, Lia, Montero, J. Alberto},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {calculus of variations; elliptic partial differential equations; rectifiable currents; superconductivity},
language = {eng},
number = {2},
pages = {237-267},
publisher = {Elsevier},
title = {On the Ginzburg–Landau model of a superconducting ball in a uniform field},
url = {http://eudml.org/doc/78691},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Alama, Stan
AU - Bronsard, Lia
AU - Montero, J. Alberto
TI - On the Ginzburg–Landau model of a superconducting ball in a uniform field
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 2
SP - 237
EP - 267
LA - eng
KW - calculus of variations; elliptic partial differential equations; rectifiable currents; superconductivity
UR - http://eudml.org/doc/78691
ER -

References

top
  1. [1] Aftalion A., Jerrard R., Properties of a single vortex solution in a rotation Bose–Einstein condensate, C. R. Acad. Sci. Paris, Ser. I336 (2003) 713-718. Zbl1050.82502MR1988308
  2. [2] G. Alberti, S. Baldo, G. Orlandi, Variational convergence for functionals of the Ginzburg–Landau type, Preprint, 2003. Zbl1160.35013MR2177107
  3. [3] Bethuel F., Brezis H., Hélein F., Ginzburg–Landau Vortices, Birkhäuser, Basel, 1994. Zbl0802.35142MR1269538
  4. [4] Bethuel F., Brezis H., Orlandi G., Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions, J. Func. Anal.186 (2001) 432-520. Zbl1077.35047MR1864830
  5. [5] Bethuel F., Rivière T., Bethuel F., Rivière T., Vortices for a variational problem related to superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 243-303. Zbl0842.35119MR1340265
  6. [6] D. Chiron, Boundary problems for the Ginzburg–Landau equation, Preprint, Commun. Cont. Math., in press. Zbl1124.35081MR2175092
  7. [7] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  8. [8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Revised third printing, Springer-Verlag, 1998. Zbl1042.35002
  9. [9] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields in the Ginzburg–Landau model, SIAM J. Math. Anal.30 (2) (1999) 341-359. Zbl0920.35058MR1664763
  10. [10] Giusti E., Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984. Zbl0545.49018MR775682
  11. [11] Iwaniec T., Scott C., Stroffolini B., Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl. (4)CLXXVII (1999) 37-115. Zbl0963.58003MR1747627
  12. [12] R.L. Jerrard, More about Bose Einstein condensates, Preprint, 2003. 
  13. [13] Jerrard R., Montero A., Sternberg P., Local minimizers of the Ginzburg–Landau energy with magnetic field in three dimensions, Comm. Math. Phys.249 (3) (2004) 549-577. Zbl1065.58012MR2084007
  14. [14] Jerrard R., Soner H.M., The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differential Equations14 (2) (2002) 151-191. Zbl1034.35025MR1890398
  15. [15] Kohn R.V., Sternberg P., Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Ser. A111 (1989) 69-84. Zbl0676.49011MR985990
  16. [16] Ladyzhenskaya O., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, 1969. Zbl0184.52603MR254401
  17. [17] Lin F.H., Rivière T., Complex Ginzburg–Landau equations in higher dimensions and codimension two area minimizing currents, J. Eur. Math. Soc.1 (1999) 237-322. Zbl0939.35056MR1714735
  18. [18] London F., Superfluids, Wiley, New York, 1950. Zbl0058.23405
  19. [19] Montero A., Sternberg P., Ziemer W., Local minimizers with vortices to the Ginzburg–Landau system in three dimensions, CPAMLVII (2004) 0099-0125. Zbl1052.49002
  20. [20] Rivière T., Line vortices in the U 1 -Higgs model, ESAIM Control Optim. Calc. Var.1 (1996) 77-167. Zbl0874.53019MR1394302
  21. [21] Sandier E., Ginzburg–Landau minimizers from R n + 1 to R n and minimal connections, Indiana Univ. Math. J.50 (4) (2001) 1807-1844. Zbl1034.58016MR1889083
  22. [22] Sandier E., Serfaty S., A product estimate for Ginzburg–Landau and corollaries, J. Funct. Anal.211 (1) (2004) 219-244. Zbl1063.35144MR2054623
  23. [23] Sandier E., Serfaty S., Ginzburg–Landau minimizers near the first critical field have bounded vorticity, Calc. Var. Partial Differential Equations17 (1) (2003) 17-28. Zbl1037.49001MR1979114
  24. [24] Serfaty S., Local minimizers for the Ginzburg–Landau energy near critical magnetic field I, Comm. Cont. Math.1 (3) (1999) 295-333. Zbl0964.49005MR1707887
  25. [25] Tinkham M., Superconductivity, Gordon and Breach, 1965. 
  26. [26] Weyl H., The method of orthogonal projection in potential theory, Duke Math. J.7 (1940) 411-444. Zbl66.0444.01MR3331JFM66.0444.01
  27. [27] Ziemer W.P., Weakly Differentiable Functions, Springer-Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.