Displaying similar documents to “On the Ginzburg–Landau model of a superconducting ball in a uniform field”

Local minimizers with vortex filaments for a Gross-Pitaevsky functional

Robert L. Jerrard (2007)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper gives a rigorous derivation of a functional proposed by Aftalion and Rivière [ (2001) 043611] to characterize the energy of vortex filaments in a rotationally forced Bose-Einstein condensate. This functional is derived as a -limit of scaled versions of the Gross-Pitaevsky functional for the wave function of such a condensate. In most situations, the vortex filament energy functional is either unbounded below or has only trivial minimizers, but we establish...

Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

Ayman Kachmar (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained. ...

Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case

Gilles A. Francfort, Nam Q. Le, Sylvia Serfaty (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.

Homogenization of evolution problems for a composite medium with very small and heavy inclusions

Michel Bellieud (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We study the homogenization of parabolic or hyperbolic equations like ρ ε n u ε t n - div ( a ε u ε ) = f in Ω × ( 0 , T ) + boundary conditions , n { 1 , 2 } , when the coefficients ρ ε , a ε (defined in Ø ) take possibly high values on a ε -periodic set of grain-like inclusions of vanishing measure. Memory effects arise in the limit problem.