Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs
Annales scientifiques de l'École Normale Supérieure (1990)
- Volume: 23, Issue: 4, page 521-542
- ISSN: 0012-9593
Access Full Article
topHow to cite
topCampana, F.. "Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs." Annales scientifiques de l'École Normale Supérieure 23.4 (1990): 521-542. <http://eudml.org/doc/82280>.
@article{Campana1990,
author = {Campana, F.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {compactification; cycles; twistor space; Kähler manifold; Fujiki’s class ; conformally flat},
language = {fre},
number = {4},
pages = {521-542},
publisher = {Elsevier},
title = {Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs},
url = {http://eudml.org/doc/82280},
volume = {23},
year = {1990},
}
TY - JOUR
AU - Campana, F.
TI - Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 4
SP - 521
EP - 542
LA - fre
KW - compactification; cycles; twistor space; Kähler manifold; Fujiki’s class ; conformally flat
UR - http://eudml.org/doc/82280
ER -
References
top- [A-H-S] M. ATIYAH, N. HITCHIN, I. SINGER, Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc., London, A 362, 1978, p. 425-461. Zbl0389.53011MR80d:53023
- [B] D. BARLET, Familles analytiques de cycles paramétrées par un espace analytique réduit, LN 482, Springer-Verlag, 1975, 1-158. Zbl0331.32008MR53 #3347
- [P.d.B-L.M — A.N] P. DE BARTOLOMEIS-L. MIGLIORINI-A. NANNICCINI, Espaces de twisteurs Kähleriens, C.R. Acad. Sci. Paris, 307, 1988, p. 259-261. Zbl0645.53024
- [B.B-O] L. BÉRARD-BERGERY, T. OCHIAI, On some generalizations of the construction of twistor spaces. Global Riemannian geometry, Ed. T. J. WILLMORE and N. J. HITCHIN. Ellis Horwood limited, 1984.
- [Bes] A. L. BESSE, Einstein manifolds. Ergebnisse der Math. 3, Band 10, Springer, 1987. Zbl0613.53001MR88f:53087
- [Bi] E. BISHOP, Conditions for the analyticity of certain sets, Michigan, Math. J., 11, 1964. Zbl0143.30302MR29 #6057
- [Bo] J. P. BOURGUIGNON, Les variétés de dimension 4 à signature non nulle et à courbure harmonique sont d'Einstein. Invent. Math., 63, 1981, p. 263-286. Zbl0456.53033MR82g:53051
- [C1] F. CAMPANA, Algébricité et compacité dans l'espace des cycles. Math. Ann. 251, 1980, p. 7-18. Zbl0445.32021MR82a:32026
- [C2] F. CAMPANA, Coréduction algébrique d'un espace analytique faiblement Kählerien. Invent. Math., 63, 1981, p. 187-223. Zbl0436.32024MR84e:32028
- [C3] F. CAMPANA, Réduction d'Albanese d'un morphisme propre et faiblement kählerien I et II. Comp. Math., 54, 1985, p. 373-416. Zbl0609.32008MR87h:32058
- [C4] F. CAMPANA, Réduction algébrique d'un morphisme faiblement kählerien propre et applications, Math. Ann., 256, 1981, p. 157-189. Zbl0461.32010MR84i:32014
- [C5] F. CAMPANA, Un critère analytique de simple connexité, Preprint.
- [C-F] F. CAMPANA-H. FLENNER, A characterization of ample vector bundles on a complex projective curve, Preprint. Zbl0728.14033
- [C-G] H. CLEMENS-P. GRIFFITHS, The intermediate Jacobian of the cubic threefold, Ann. Math., 95, 1972, p. 281-356. Zbl0214.48302MR46 #1796
- [D] S. DONALDSON, An application of gauge theory to the topology of 4-manifolds. J. Diff. Geom., 18, 1983, p. 269-316. Zbl0507.57010MR85a:32036
- [D-V] M. DUBOIS-VIOLETTE, Structures complexes au-dessus des variétés, applications, Séminaire de l'E.N.S., 1981. Zbl0522.53029
- [Fr] M. FREEDMAN, Topology of 4-dimensional manifolds. J. Diff. Geom., 17, 1982, p. 357-454. Zbl0528.57011MR84b:57006
- [F-K] T. FRIEDRICH-F. KURKE, Compact Four-dimensional Self-dual Einstein Manifolds with positive scalar curvature. Math. Nachr., 106, 1982, p. 271-299. Zbl0503.53035MR84b:53043
- [F] A. FUJIKI, On automorphism groups of compact Kähler manifolds, Invent. Math., 44, 1978, p. 225-258. Zbl0367.32004MR58 #1285
- [Ha] R. HARTSHORNE, Cohomological dimension of algebraic varieties, Ann. Math., 88, 1968, p. 405-450. Zbl0169.23302MR38 #1103
- [H1] N. HITCHIN, Kählerian twistor spaces. Proc., London, Math. Soc., 43, 1981, p. 133-150. Zbl0474.14024MR84b:32014
- [H2] N. HITCHIN, Linear field equations on self-dual spaces, Proc. R. Soc., London, A 370, 1980, p. 173-191. Zbl0436.53058MR81i:81057
- [Hi] H. HIRONAKA, On some formal embeddings. III, J. Math., 12, 1968, p. 587-602. Zbl0169.52302MR39 #2773
- [H-M] H. HIRONAKA-H. MATSUMURA, Formal functions and formal embeddings, J. Math. Soc. Jpn, 20, 1968, p. 52-82. Zbl0157.27701MR40 #4274
- [Hz] A. HIRSCHOWITZ, On the convergence of formal equivalence between embeddings, Ann. Math., 113, 1981, p. 501-514. Zbl0421.32029MR84m:32027
- [Kh] M. KHALOUI, Espaces de Twisteurs et complexification d'une variété conformément plate. Thèse de 3e cycle, Université de Nancy, 1987.
- [Ko] K. KODAIRA, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of a complex manifold, Ann. Math., 75, 1962, p. 146-162. Zbl0112.38404MR24 #A3665b
- [Ku] N. KUIPER, On conformally flat spaces in the large, Ann. Math., 50, 1949, p. 916-924. Zbl0041.09303MR11,133b
- [Li] D. LIEBERMAN, Compactness of the Chow scheme, Lect. Notes 670, Springer Verlag, 1978, p. 140-185. Zbl0391.32018MR80h:32056
- [Pe] R. PENROSE, Nonlinear gravitons and curved twistor theory. General Relativity and Gravitation, 7, 1976, p. 31-52. Zbl0354.53025MR55 #11905
- [P] Y. S. POON, Compact self-dual manifolds with positive scalar curvature, J. Diff. Geom., 24, 1986, p. 97-132. Zbl0583.53054MR88b:32022
- [Sa] S. SALAMON, Quaternionic Kähler manifolds, Invent. Math., 67, 1982, p. 143-171. Zbl0486.53048MR83k:53054
- [Se] J. P. SERRE, On the fundamental group of a unirational variety, J. of London Math. Soc., 34, 1959, p. 481-484. Zbl0097.36301MR22 #43
- [S] M. SLUPINSKI, Espaces de twisteurs kählériens en dimension 4k, k > 1. Thèse École Polytechnique, 1984. Zbl0598.53056
- [Sp] E. H. SPANIER, Algebraic topology. McGraw Hill series in higher mathematics, New York, 1966. Zbl0145.43303
- [St] STEINBISS, Das formale Prinzip für reduzierte komplexe Raüme mit einer schwachen Positivitätseigenschaft. Math. Ann., 274, 1986, p. 485-502. Zbl0572.32004MR87h:32020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.