Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs

F. Campana

Annales scientifiques de l'École Normale Supérieure (1990)

  • Volume: 23, Issue: 4, page 521-542
  • ISSN: 0012-9593

How to cite

top

Campana, F.. "Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs." Annales scientifiques de l'École Normale Supérieure 23.4 (1990): 521-542. <http://eudml.org/doc/82280>.

@article{Campana1990,
author = {Campana, F.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {compactification; cycles; twistor space; Kähler manifold; Fujiki’s class ; conformally flat},
language = {fre},
number = {4},
pages = {521-542},
publisher = {Elsevier},
title = {Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs},
url = {http://eudml.org/doc/82280},
volume = {23},
year = {1990},
}

TY - JOUR
AU - Campana, F.
TI - Compactifications kähleriennes de voisinages ouverts de cycles géométriquement positifs
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1990
PB - Elsevier
VL - 23
IS - 4
SP - 521
EP - 542
LA - fre
KW - compactification; cycles; twistor space; Kähler manifold; Fujiki’s class ; conformally flat
UR - http://eudml.org/doc/82280
ER -

References

top
  1. [A-H-S] M. ATIYAH, N. HITCHIN, I. SINGER, Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc., London, A 362, 1978, p. 425-461. Zbl0389.53011MR80d:53023
  2. [B] D. BARLET, Familles analytiques de cycles paramétrées par un espace analytique réduit, LN 482, Springer-Verlag, 1975, 1-158. Zbl0331.32008MR53 #3347
  3. [P.d.B-L.M — A.N] P. DE BARTOLOMEIS-L. MIGLIORINI-A. NANNICCINI, Espaces de twisteurs Kähleriens, C.R. Acad. Sci. Paris, 307, 1988, p. 259-261. Zbl0645.53024
  4. [B.B-O] L. BÉRARD-BERGERY, T. OCHIAI, On some generalizations of the construction of twistor spaces. Global Riemannian geometry, Ed. T. J. WILLMORE and N. J. HITCHIN. Ellis Horwood limited, 1984. 
  5. [Bes] A. L. BESSE, Einstein manifolds. Ergebnisse der Math. 3, Band 10, Springer, 1987. Zbl0613.53001MR88f:53087
  6. [Bi] E. BISHOP, Conditions for the analyticity of certain sets, Michigan, Math. J., 11, 1964. Zbl0143.30302MR29 #6057
  7. [Bo] J. P. BOURGUIGNON, Les variétés de dimension 4 à signature non nulle et à courbure harmonique sont d'Einstein. Invent. Math., 63, 1981, p. 263-286. Zbl0456.53033MR82g:53051
  8. [C1] F. CAMPANA, Algébricité et compacité dans l'espace des cycles. Math. Ann. 251, 1980, p. 7-18. Zbl0445.32021MR82a:32026
  9. [C2] F. CAMPANA, Coréduction algébrique d'un espace analytique faiblement Kählerien. Invent. Math., 63, 1981, p. 187-223. Zbl0436.32024MR84e:32028
  10. [C3] F. CAMPANA, Réduction d'Albanese d'un morphisme propre et faiblement kählerien I et II. Comp. Math., 54, 1985, p. 373-416. Zbl0609.32008MR87h:32058
  11. [C4] F. CAMPANA, Réduction algébrique d'un morphisme faiblement kählerien propre et applications, Math. Ann., 256, 1981, p. 157-189. Zbl0461.32010MR84i:32014
  12. [C5] F. CAMPANA, Un critère analytique de simple connexité, Preprint. 
  13. [C-F] F. CAMPANA-H. FLENNER, A characterization of ample vector bundles on a complex projective curve, Preprint. Zbl0728.14033
  14. [C-G] H. CLEMENS-P. GRIFFITHS, The intermediate Jacobian of the cubic threefold, Ann. Math., 95, 1972, p. 281-356. Zbl0214.48302MR46 #1796
  15. [D] S. DONALDSON, An application of gauge theory to the topology of 4-manifolds. J. Diff. Geom., 18, 1983, p. 269-316. Zbl0507.57010MR85a:32036
  16. [D-V] M. DUBOIS-VIOLETTE, Structures complexes au-dessus des variétés, applications, Séminaire de l'E.N.S., 1981. Zbl0522.53029
  17. [Fr] M. FREEDMAN, Topology of 4-dimensional manifolds. J. Diff. Geom., 17, 1982, p. 357-454. Zbl0528.57011MR84b:57006
  18. [F-K] T. FRIEDRICH-F. KURKE, Compact Four-dimensional Self-dual Einstein Manifolds with positive scalar curvature. Math. Nachr., 106, 1982, p. 271-299. Zbl0503.53035MR84b:53043
  19. [F] A. FUJIKI, On automorphism groups of compact Kähler manifolds, Invent. Math., 44, 1978, p. 225-258. Zbl0367.32004MR58 #1285
  20. [Ha] R. HARTSHORNE, Cohomological dimension of algebraic varieties, Ann. Math., 88, 1968, p. 405-450. Zbl0169.23302MR38 #1103
  21. [H1] N. HITCHIN, Kählerian twistor spaces. Proc., London, Math. Soc., 43, 1981, p. 133-150. Zbl0474.14024MR84b:32014
  22. [H2] N. HITCHIN, Linear field equations on self-dual spaces, Proc. R. Soc., London, A 370, 1980, p. 173-191. Zbl0436.53058MR81i:81057
  23. [Hi] H. HIRONAKA, On some formal embeddings. III, J. Math., 12, 1968, p. 587-602. Zbl0169.52302MR39 #2773
  24. [H-M] H. HIRONAKA-H. MATSUMURA, Formal functions and formal embeddings, J. Math. Soc. Jpn, 20, 1968, p. 52-82. Zbl0157.27701MR40 #4274
  25. [Hz] A. HIRSCHOWITZ, On the convergence of formal equivalence between embeddings, Ann. Math., 113, 1981, p. 501-514. Zbl0421.32029MR84m:32027
  26. [Kh] M. KHALOUI, Espaces de Twisteurs et complexification d'une variété conformément plate. Thèse de 3e cycle, Université de Nancy, 1987. 
  27. [Ko] K. KODAIRA, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of a complex manifold, Ann. Math., 75, 1962, p. 146-162. Zbl0112.38404MR24 #A3665b
  28. [Ku] N. KUIPER, On conformally flat spaces in the large, Ann. Math., 50, 1949, p. 916-924. Zbl0041.09303MR11,133b
  29. [Li] D. LIEBERMAN, Compactness of the Chow scheme, Lect. Notes 670, Springer Verlag, 1978, p. 140-185. Zbl0391.32018MR80h:32056
  30. [Pe] R. PENROSE, Nonlinear gravitons and curved twistor theory. General Relativity and Gravitation, 7, 1976, p. 31-52. Zbl0354.53025MR55 #11905
  31. [P] Y. S. POON, Compact self-dual manifolds with positive scalar curvature, J. Diff. Geom., 24, 1986, p. 97-132. Zbl0583.53054MR88b:32022
  32. [Sa] S. SALAMON, Quaternionic Kähler manifolds, Invent. Math., 67, 1982, p. 143-171. Zbl0486.53048MR83k:53054
  33. [Se] J. P. SERRE, On the fundamental group of a unirational variety, J. of London Math. Soc., 34, 1959, p. 481-484. Zbl0097.36301MR22 #43
  34. [S] M. SLUPINSKI, Espaces de twisteurs kählériens en dimension 4k, k &gt; 1. Thèse École Polytechnique, 1984. Zbl0598.53056
  35. [Sp] E. H. SPANIER, Algebraic topology. McGraw Hill series in higher mathematics, New York, 1966. Zbl0145.43303
  36. [St] STEINBISS, Das formale Prinzip für reduzierte komplexe Raüme mit einer schwachen Positivitätseigenschaft. Math. Ann., 274, 1986, p. 485-502. Zbl0572.32004MR87h:32020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.