On the Iwahori-spherical discrete series for p -adic Chevalley groups; formal degrees and L -packets

Mark Reeder

Annales scientifiques de l'École Normale Supérieure (1994)

  • Volume: 27, Issue: 4, page 463-491
  • ISSN: 0012-9593

How to cite

top

Reeder, Mark. "On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets." Annales scientifiques de l'École Normale Supérieure 27.4 (1994): 463-491. <http://eudml.org/doc/82367>.

@article{Reeder1994,
author = {Reeder, Mark},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Chevalley group of adjoint type; nonarchimedean local field; formal degrees; square integrable representations; Iwahori group; Whittaker model; weights; Langlands dual; -packets},
language = {eng},
number = {4},
pages = {463-491},
publisher = {Elsevier},
title = {On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets},
url = {http://eudml.org/doc/82367},
volume = {27},
year = {1994},
}

TY - JOUR
AU - Reeder, Mark
TI - On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1994
PB - Elsevier
VL - 27
IS - 4
SP - 463
EP - 491
LA - eng
KW - Chevalley group of adjoint type; nonarchimedean local field; formal degrees; square integrable representations; Iwahori group; Whittaker model; weights; Langlands dual; -packets
UR - http://eudml.org/doc/82367
ER -

References

top
  1. [B1] A. BOREL, Admissible representations of a semisimple p-adic group over a local field with vectors fixed under an Iwahori subgroup (Inv. Math. Vol. 35, p. 233-259). Zbl0334.22012MR56 #3196
  2. [B-K] C. BUSHNELL, P. KUTZKO, The admissible dual of GL(N) via compact open subgroups (Annals of Math. Studies, Princeton University Press). Zbl0787.22016
  3. [Car] R. CARTER, Finite groups of Lie type : Conjugacy classes and complex characters, Wiley, 1985. Zbl0567.20023
  4. [C2] W. CASSELMAN, Introduction to the theory of admissible representations of p-adic reductive groups, mimeographed notes. 
  5. [CMS] L. CORWIN, A. MOY, P. SALLY, Degrees and formal degrees for division algebras and GLn over a p-adic field (Pac. Jn. Math., Vol. 141, 1990, p. 21-25). Zbl0689.22009MR90k:22025
  6. [CLP] C. DE CONCINI, G. LUSZTIG, C. PROCESI, Homology of the zero set of a nilpotent vector field on a flag manifold (Jn. A.M.S., Vol. 1, p. 15-34). Zbl0646.14034MR89f:14052
  7. [G] V. GINZBURG, Proof of the Deligne-Langlands conjecture (Doklady, Vol. 35, 1987, p. 304-308). Zbl0639.22009MR89a:22031
  8. [GP] B. GROSS, D. PRASAD, On the decomposition of a representation of SOn when restricted to SOn-1, preprint. 
  9. [K-L] D. KAZHDAN, G. LUSZTIG, Proof of the Deligne-Langlands conjecture for Hecke algebras (Invent. Math., Vol. 87, 1987, p. 153-215). Zbl0613.22004MR88d:11121
  10. [Li] J.-S. LI, Some results on the unramified principal series of p-adic groups (Math. Ann., Vol. 292, 1992, p. 747-761). Zbl0804.22007MR93d:22023
  11. [L] G. LUSZTIG, Some examples of square integrable representations of semisimple p-adic groups (Trans. A.M.S. Vol. 277, 1983, p. 623-653). Zbl0526.22015MR84j:22023
  12. [M] I. G. MACDONALD, The Poincaré series of a Coxeter group (Math. Ann., Vol. 199, 1972, p. 161-174). Zbl0286.20062MR48 #433
  13. [Mo] L. MORRIS, Tamely ramified intertwining algebras, preprint. Zbl0854.22022
  14. [R] M. REEDER, Whittaker functions, prehomogeneous vector spaces and standard representations of p-adic groups, preprint. Zbl0794.22014
  15. [R2] M. REEDER, p-adic Whittaker functions and vector bundles on flag manifolds (to appear in Comp. Math.). Zbl0819.22012
  16. [Ro] F. RODIER, Sur les représentations non ramifiées des groupes réductifs p-adiques : l'exemple de GSp (4) (Bull. Soc. Math. France, Vol. 116, 1988, p. 15-42). Zbl0662.22011MR89i:22033
  17. [Sh] F. SHAHIDI, A proof of Langlands conjecture on Plancherel measures ; Complementary series for p-adic groups (Ann. Math., Vol. 132, 1990, p. 273-330). Zbl0780.22005MR91m:11095
  18. [S] A. SILBERGER, Special representations of reductive p-adic groups are not integrable (Ann. Math. Vol. 111, 1980, p. 571-587). Zbl0437.22015MR82k:22015
  19. [S1] A. SILBERGER, Introduction to harmonic analysis on reductive p-adic groups, Princeton Univ. Press, Princeton, N.J., 1979. Zbl0458.22006MR81m:22025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.