On the Iwahori-spherical discrete series for p -adic Chevalley groups; formal degrees and L -packets

Mark Reeder

Annales scientifiques de l'École Normale Supérieure (1994)

  • Volume: 27, Issue: 4, page 463-491
  • ISSN: 0012-9593

How to cite

top

Reeder, Mark. "On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets." Annales scientifiques de l'École Normale Supérieure 27.4 (1994): 463-491. <http://eudml.org/doc/82367>.

@article{Reeder1994,
author = {Reeder, Mark},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Chevalley group of adjoint type; nonarchimedean local field; formal degrees; square integrable representations; Iwahori group; Whittaker model; weights; Langlands dual; -packets},
language = {eng},
number = {4},
pages = {463-491},
publisher = {Elsevier},
title = {On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets},
url = {http://eudml.org/doc/82367},
volume = {27},
year = {1994},
}

TY - JOUR
AU - Reeder, Mark
TI - On the Iwahori-spherical discrete series for $p$-adic Chevalley groups; formal degrees and $L$-packets
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1994
PB - Elsevier
VL - 27
IS - 4
SP - 463
EP - 491
LA - eng
KW - Chevalley group of adjoint type; nonarchimedean local field; formal degrees; square integrable representations; Iwahori group; Whittaker model; weights; Langlands dual; -packets
UR - http://eudml.org/doc/82367
ER -

References

top
  1. [B1] A. BOREL, Admissible representations of a semisimple p-adic group over a local field with vectors fixed under an Iwahori subgroup (Inv. Math. Vol. 35, p. 233-259). Zbl0334.22012MR56 #3196
  2. [B-K] C. BUSHNELL, P. KUTZKO, The admissible dual of GL(N) via compact open subgroups (Annals of Math. Studies, Princeton University Press). Zbl0787.22016
  3. [Car] R. CARTER, Finite groups of Lie type : Conjugacy classes and complex characters, Wiley, 1985. Zbl0567.20023
  4. [C2] W. CASSELMAN, Introduction to the theory of admissible representations of p-adic reductive groups, mimeographed notes. 
  5. [CMS] L. CORWIN, A. MOY, P. SALLY, Degrees and formal degrees for division algebras and GLn over a p-adic field (Pac. Jn. Math., Vol. 141, 1990, p. 21-25). Zbl0689.22009MR90k:22025
  6. [CLP] C. DE CONCINI, G. LUSZTIG, C. PROCESI, Homology of the zero set of a nilpotent vector field on a flag manifold (Jn. A.M.S., Vol. 1, p. 15-34). Zbl0646.14034MR89f:14052
  7. [G] V. GINZBURG, Proof of the Deligne-Langlands conjecture (Doklady, Vol. 35, 1987, p. 304-308). Zbl0639.22009MR89a:22031
  8. [GP] B. GROSS, D. PRASAD, On the decomposition of a representation of SOn when restricted to SOn-1, preprint. 
  9. [K-L] D. KAZHDAN, G. LUSZTIG, Proof of the Deligne-Langlands conjecture for Hecke algebras (Invent. Math., Vol. 87, 1987, p. 153-215). Zbl0613.22004MR88d:11121
  10. [Li] J.-S. LI, Some results on the unramified principal series of p-adic groups (Math. Ann., Vol. 292, 1992, p. 747-761). Zbl0804.22007MR93d:22023
  11. [L] G. LUSZTIG, Some examples of square integrable representations of semisimple p-adic groups (Trans. A.M.S. Vol. 277, 1983, p. 623-653). Zbl0526.22015MR84j:22023
  12. [M] I. G. MACDONALD, The Poincaré series of a Coxeter group (Math. Ann., Vol. 199, 1972, p. 161-174). Zbl0286.20062MR48 #433
  13. [Mo] L. MORRIS, Tamely ramified intertwining algebras, preprint. Zbl0854.22022
  14. [R] M. REEDER, Whittaker functions, prehomogeneous vector spaces and standard representations of p-adic groups, preprint. Zbl0794.22014
  15. [R2] M. REEDER, p-adic Whittaker functions and vector bundles on flag manifolds (to appear in Comp. Math.). Zbl0819.22012
  16. [Ro] F. RODIER, Sur les représentations non ramifiées des groupes réductifs p-adiques : l'exemple de GSp (4) (Bull. Soc. Math. France, Vol. 116, 1988, p. 15-42). Zbl0662.22011MR89i:22033
  17. [Sh] F. SHAHIDI, A proof of Langlands conjecture on Plancherel measures ; Complementary series for p-adic groups (Ann. Math., Vol. 132, 1990, p. 273-330). Zbl0780.22005MR91m:11095
  18. [S] A. SILBERGER, Special representations of reductive p-adic groups are not integrable (Ann. Math. Vol. 111, 1980, p. 571-587). Zbl0437.22015MR82k:22015
  19. [S1] A. SILBERGER, Introduction to harmonic analysis on reductive p-adic groups, Princeton Univ. Press, Princeton, N.J., 1979. Zbl0458.22006MR81m:22025

NotesEmbed ?

top

You must be logged in to post comments.