An example of a modular foliation deducted from an algebraic solution of Painlevé VI equation

Gaël Cousin[1]

  • [1] IMPA, Estrada Dona Castorina, 110, Horto, Rio de Janeiro, Brésil

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 2, page 699-737
  • ISSN: 0373-0956

Abstract

top
One can easily give examples of rank 2 flat connections over 2 by rational pull-back of connections over 1 . We give an example of a connection that can not occur in this way; this example is constructed from an algebraic solution of Painlevé VI equation. From this example we deduce a Hilbert modular foliation. The proof of this relies on the classification of foliations on projective surfaces due to Brunella, Mc Quillan and Mendes. Then, we get the dual foliation and, by a precise monodromy analysis, we see that our twice foliated surface is covered by the classical Hilbert modular surface constructed from the action of PSL 2 ( [ 3 ] ) on the bidisc.

How to cite

top

Cousin, Gaël. "Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI." Annales de l’institut Fourier 64.2 (2014): 699-737. <http://eudml.org/doc/275557>.

@article{Cousin2014,
abstract = {On peut construire facilement des exemples de connexions plates de rang $2$ sur $\mathbb\{P\}^2$ comme tirés en arrière de connexions sur $\mathbb\{P\}^1$. On donne un exemple de connexion qui ne peut être obtenue de cette manière. Cet exemple est construit à partir d’une solution algébrique de l’équation de Painlevé VI. On en déduit un feuilletage modulaire. La preuve de ce fait repose sur la classification des feuilletages sur les surfaces projectives par leurs dimensions de Kodaira, fruit du travail de Brunella, McQuillan et Mendes. On décrit ensuite le feuilletage dual. Par une analyse fine de monodromie, on voit que notre surface bifeuilletée est revêtue par la surface modulaire de Hilbert construite en faisant agir $\mathrm\{PSL\}_2(\mathbb\{Z\}[\sqrt\{3\}])$ sur le bidisque.},
affiliation = {IMPA, Estrada Dona Castorina, 110, Horto, Rio de Janeiro, Brésil},
author = {Cousin, Gaël},
journal = {Annales de l’institut Fourier},
keywords = {holomorphic foliations; Kodaira dimension; Hilbert modular surfaces; flat connections; Painlevé VI equation},
language = {fre},
number = {2},
pages = {699-737},
publisher = {Association des Annales de l’institut Fourier},
title = {Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI},
url = {http://eudml.org/doc/275557},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Cousin, Gaël
TI - Un exemple de feuilletage modulaire déduit d’une solution algébrique de l’équation de Painlevé VI
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 2
SP - 699
EP - 737
AB - On peut construire facilement des exemples de connexions plates de rang $2$ sur $\mathbb{P}^2$ comme tirés en arrière de connexions sur $\mathbb{P}^1$. On donne un exemple de connexion qui ne peut être obtenue de cette manière. Cet exemple est construit à partir d’une solution algébrique de l’équation de Painlevé VI. On en déduit un feuilletage modulaire. La preuve de ce fait repose sur la classification des feuilletages sur les surfaces projectives par leurs dimensions de Kodaira, fruit du travail de Brunella, McQuillan et Mendes. On décrit ensuite le feuilletage dual. Par une analyse fine de monodromie, on voit que notre surface bifeuilletée est revêtue par la surface modulaire de Hilbert construite en faisant agir $\mathrm{PSL}_2(\mathbb{Z}[\sqrt{3}])$ sur le bidisque.
LA - fre
KW - holomorphic foliations; Kodaira dimension; Hilbert modular surfaces; flat connections; Painlevé VI equation
UR - http://eudml.org/doc/275557
ER -

References

top
  1. F. V. Andreev, A. V. Kitaev, Transformations R S 4 2 ( 3 ) of the ranks 4 and algebraic solutions of the sixth Painlevé equation, Comm. Math. Phys. 228 (2002), 151-176 Zbl1019.34086MR1911252
  2. W. L. Baily, A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442-528 Zbl0154.08602MR216035
  3. Joan S. Birman, Braids, links, and mapping class groups, (1975), Princeton University Press, Princeton, N. J. Zbl0305.57013MR375281
  4. Philip Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005), 167-208 Zbl1070.34123MR2107041
  5. Philip Boalch, The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006), 183-214 Zbl1112.34072MR2254812
  6. Philip Boalch, Some explicit solutions to the Riemann-Hilbert problem, Differential equations and quantum groups 9 (2007), 85-112, Eur. Math. Soc., Zürich MR2322328
  7. Marco Brunella, Birational geometry of foliations, (2000), Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro Zbl1073.14022MR1948251
  8. Marco Brunella, Subharmonic variation of the leafwise Poincaré metric, Invent. Math. 152 (2003), 119-148 Zbl1029.32014MR1965362
  9. Dominique Cerveau, Alcides Lins-Neto, Frank Loray, Jorge Vitório Pereira, Frédéric Touzet, Complex codimension one singular foliations and Godbillon-Vey sequences, Mosc. Math. J. 7 (2007), 21-54, 166 Zbl1135.37019MR2324555
  10. R. C. Churchill, Two generator subgroups of SL ( 2 , ) and the hypergeometric, Riemann, and Lamé equations, J. Symbolic Comput. 28 (1999), 521-545 Zbl0958.34074MR1731936
  11. José Ignacio Cogolludo-Agustín, Braid monodromy of algebraic curves, Ann. Math. Blaise Pascal 18 (2011), 141-209 Zbl1254.32043MR2830090
  12. Kevin Corlette, Carlos Simpson, On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math. 144 (2008), 1271-1331 Zbl1155.58006MR2457528
  13. P. de la Harpe, P. Siegfried, Singularités de Klein, Enseign. Math. (2) 25 (1979), 207-256 (1980) MR570310
  14. Karamoko Diarra, Construction et classification de certaines solutions algébriques des systèmes de Garnier, (2012) Zbl1268.34186
  15. B. Dubrovin, M. Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000), 55-147 Zbl0960.34075MR1767271
  16. Gerard van der Geer, Hilbert modular surfaces, 16 (1988), Springer-Verlag, Berlin Zbl0634.14022MR930101
  17. Phillip Griffiths, Joseph Harris, Principles of algebraic geometry, (1978), Wiley-Interscience [John Wiley & Sons], New York Zbl0836.14001MR507725
  18. F. Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953), 1-22 Zbl0093.27605MR62842
  19. F. Hirzebruch, Hilbert modular surfaces, Enseignement Math. (2) 19 (1973), 183-281 Zbl0285.14007MR393045
  20. F. Hirzebruch, D. Zagier, Classification of Hilbert modular surfaces, Complex analysis and algebraic geometry (1977), 43-77, Iwanami Shoten, Tokyo Zbl0354.14011MR480356
  21. Michi-aki Inaba, Katsunori Iwasaki, Masa-Hiko Saito, Bäcklund transformations of the sixth Painlevé equation in terms of Riemann-Hilbert correspondence, Int. Math. Res. Not. (2004), 1-30 Zbl1087.34062MR2036953
  22. Katsunori Iwasaki, Hironobu Kimura, Shun Shimomura, Masaaki Yoshida, From Gauss to Painlevé, (1991), Friedr. Vieweg & Sohn, Braunschweig Zbl0743.34014MR1118604
  23. Oleg Lisovyy, Yuriy Tykhyy, Algebraic solutions of the sixth Painlevé equation, (2008) Zbl1307.34135
  24. Frank Loray, Jorge Vitório Pereira, Transversely projective foliations on surfaces : existence of minimal form and prescription of monodromy, Internat. J. Math. 18 (2007), 723-747 Zbl1124.37028MR2337401
  25. Michael McQuillan, Canonical models of foliations, Pure Appl. Math. Q. 4 (2008), 877-1012 Zbl1166.14010MR2435846
  26. L. G. Mendes, J. V. Pereira, Hilbert modular foliations on the projective plane, Comment. Math. Helv. 80 (2005), 243-291 Zbl1084.32025MR2142243
  27. Dmitry Novikov, Sergei Yakovenko, Lectures on meromorphic flat connexions, Disponible en ligne (2002) 
  28. Oswald Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211-248 Zbl0275.32010MR367276
  29. B. Azevedo Scárdua, Transversely affine and transversely projective holomorphic foliations, Ann. Sci. École Norm. Sup. (4) 30 (1997), 169-204 Zbl0889.32031MR1432053
  30. Ichiro Shimada, Lectures on Zariski-Van Kampen Theorem, Notes de Cours, disponibles en ligne Zbl1074.14517
  31. Hideo Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33-71 Zbl0218.10045MR145106
  32. Frédéric Touzet, Sur les feuilletages holomorphes transversalement projectifs, Ann. Inst. Fourier (Grenoble) 53 (2003), 815-846 Zbl1032.32020MR2008442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.