Caractérisation des ellipsoïdes par leurs groupes d'automorphismes

Edith Socié-Méthou

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 4, page 537-548
  • ISSN: 0012-9593

How to cite

top

Socié-Méthou, Edith. "Caractérisation des ellipsoïdes par leurs groupes d'automorphismes." Annales scientifiques de l'École Normale Supérieure 35.4 (2002): 537-548. <http://eudml.org/doc/82581>.

@article{Socié2002,
author = {Socié-Méthou, Edith},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {automorphisms of strongly convex bodies; ellipsoid},
language = {fre},
number = {4},
pages = {537-548},
publisher = {Elsevier},
title = {Caractérisation des ellipsoïdes par leurs groupes d'automorphismes},
url = {http://eudml.org/doc/82581},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Socié-Méthou, Edith
TI - Caractérisation des ellipsoïdes par leurs groupes d'automorphismes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 4
SP - 537
EP - 548
LA - fre
KW - automorphisms of strongly convex bodies; ellipsoid
UR - http://eudml.org/doc/82581
ER -

References

top
  1. [1] Bass H., Groups of integral representation type, Pacific J. Math.86 (1) (1980) 15-51. Zbl0444.20006MR586867
  2. [2] Benoist Y., Automorphismes des cônes convexes, Invent. Math.141 (1) (2000) 149-193. Zbl0957.22008MR1767272
  3. [3] Benzécri J.-P., Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France88 (1960) 229-332. Zbl0098.35204MR124005
  4. [4] Berger M., Geometry. I-II, Springer-Verlag, Berlin, 1987, Translated from the French. Zbl0606.51001MR882541
  5. [5] Bourbaki N., Éléments de mathématique. Groupes et algèbres de Lie, Hermann, Paris, 1971. Zbl0213.04103MR453824
  6. [6] Colbois B., Verovic P., A rigidity result for Hilbert geometries. Prépublication Univ. Savoie, 2000. 
  7. [7] Goldman W.M., Convex real projective structures on compact surfaces, J. Differential Geom.31 (3) (1990) 791-845. Zbl0711.53033MR1053346
  8. [8] Lelong-Ferrand J., Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg., Cl. Sci. Mém. Coll., Collect. Octavo39 (5) (1971). Zbl0215.50902MR322739
  9. [9] Malcev A., On the theory of the Lie groups in the large, Rec. Math. [Mat. Sbornik] N.S.16 (58) (1945) 163-190. Zbl0061.04601MR13165
  10. [10] Schur I., Über die Darstellung der symmetrischen und der alternierenden Gruppen durch gebrochene lineare Substitutionen, J. Math.139 (1911) 155-250. Zbl42.0154.02JFM42.0154.02
  11. [11] Wong B., Characterization of the unit ball in Cn by its automorphism group, Invent. Math.41 (3) (1977). Zbl0385.32016MR492401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.