Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems

Eva Miranda; Nguyen Tien Zung

Annales scientifiques de l'École Normale Supérieure (2004)

  • Volume: 37, Issue: 6, page 819-839
  • ISSN: 0012-9593

How to cite

top

Miranda, Eva, and Zung, Nguyen Tien. "Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems." Annales scientifiques de l'École Normale Supérieure 37.6 (2004): 819-839. <http://eudml.org/doc/82647>.

@article{Miranda2004,
author = {Miranda, Eva, Zung, Nguyen Tien},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {symmetry; Liouville integrability; geometry of integrable Hamiltonian systems; symplectic manifolds; Lagrangian fibration; moment map},
language = {eng},
number = {6},
pages = {819-839},
publisher = {Elsevier},
title = {Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems},
url = {http://eudml.org/doc/82647},
volume = {37},
year = {2004},
}

TY - JOUR
AU - Miranda, Eva
AU - Zung, Nguyen Tien
TI - Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 6
SP - 819
EP - 839
LA - eng
KW - symmetry; Liouville integrability; geometry of integrable Hamiltonian systems; symplectic manifolds; Lagrangian fibration; moment map
UR - http://eudml.org/doc/82647
ER -

References

top
  1. [1] Bochner S., Compact groups of differentiable transformations, Ann. of Math. (2)46 (1945) 372-381. Zbl0063.00487MR13161
  2. [2] Chaperon M., Quelques outils de la théorie des actions différentiables, in: Third Schnepfenried Geometry Conference, vol. 1 (Schnepfenried, 1982), Astérisque, vols. 107–108, Soc. Math. France, Paris, 1983, pp. 259-275. Zbl0533.57018MR753141
  3. [3] Colin de Verdière Y., Vey J., Le lemme de Morse isochore, Topology18 (1979) 283-293. Zbl0441.58003MR551010
  4. [4] Colin de Verdière Y., Vu-Ngoc S., Singular Bohr–Sommerfeld rules for 2D integrable systems, Ann. Scient. Éc. Norm. Sup.36 (2) (2003) 1-55. Zbl1028.81026MR1987976
  5. [5] Currás-Bosch C., unpublished note, 2001. 
  6. [6] Currás-Bosch C., Miranda E., Symplectic linearization of singular Lagrangian foliations in M 4 , Diff. Geom. Appl.18 (2) (2003) 195-205. Zbl1040.53035MR1958156
  7. [7] Dufour J.-P., Molino P., Compactification d’actions de R n et variables action-angle avec singularités, in: Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Springer, New York, 1991, pp. 151-167. Zbl0752.58011MR1104923
  8. [8] Eliasson L.H., Hamiltonian systems with Poisson commuting integrals, Ph.D. Thesis, 1984. 
  9. [9] Eliasson L.H., Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case, Comment. Math. Helv.65 (1) (1990) 4-35. Zbl0702.58024MR1036125
  10. [10] Guillemin V., Sternberg S., A normal form for the moment map, in: Sternberg S. (Ed.), Differential Geometric Methods in Mathematical Physics, Reidel, Dordrecht, 1984. Zbl0548.58011MR767835
  11. [11] Ito H., Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv.64 (3) (1989) 412-461. Zbl0686.58021MR998858
  12. [12] Ito H., Action-angle coordinates at singularities for analytic integrable systems, Math. Z.206 (3) (1991) 363-407. Zbl0707.58026MR1095762
  13. [13] Liouville J., Note sur l'intégration des équations différentielles de la dynamique, présentée au bureau des longitudes le 29 juin 1853, Journal de Mathématiques pures et appliquées20 (1855) 137-138. 
  14. [14] Marle C.-M., Sous-variétés de rang constant d'une variété symplectique, in: Third Schnepfenried Geometry Conference, vol. 1 (Schnepfenried, 1982), Astérisque, vols. 107–108, Soc. Math. France, Paris, 1983, pp. 69-86. Zbl0529.53031MR753130
  15. [15] Marle C.-M., Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino43 (2) (1985) 227-251. Zbl0599.53032MR859857
  16. [16] Mineur H., Sur les systèmes mécaniques admettant n intégrales premières uniformes et l'extension à ces systèmes de la méthode de quantification de Sommerfeld, C. R. Acad. Sci., Paris200 (1935) 1571-1573. Zbl0011.37203
  17. [17] Mineur H., Réduction des systèmes mécaniques à n degré de liberté admettant n intégrales premières uniformes en involution aux systèmes à variables séparées, J. Math. Pure Appl., IX Sér.15 (1936) 385-389. Zbl0015.32401JFM62.1513.02
  18. [18] Mineur H., Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant n intégrales premières uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr–Sommerfeld, Journal de l'École Polytechnique, Série III, 143ème année (1937) 173-191, and 237–270. Zbl0017.04105
  19. [19] Miranda E., On symplectic linearization of singular Lagrangian foliations, Ph.D. Thesis, Universitat de Barcelona, 2003. Zbl1040.53035
  20. [20] Palais R.S., On the existence of slices for actions of noncompact Lie groups, Ann. Math.73 (2) (1961) 295-323. Zbl0103.01802MR126506
  21. [21] Sevryuk M.B., Invariant sets of degenerate Hamiltonian systems near equilibria, Regul. Chaotic Dyn.3 (3) (1998) 82-92. Zbl0940.70012MR1704971
  22. [22] Vey J., Sur certains systèmes dynamiques séparables, Amer. J. Math.100 (3) (1978) 591-614. Zbl0384.58012MR501141
  23. [23] Weinstein A., Symplectic manifolds and their Lagrangian submanifolds, Advances in Math.6 (1971) 329-346. Zbl0213.48203MR286137
  24. [24] Weinstein A., Lectures on Symplectic Submanifolds, Regional Conference Series in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 1977. Zbl0406.53031MR464312
  25. [25] Zung Nguyen Tien, Symplectic topology of integrable Hamiltonian systems, I: Arnold–Liouville with singularities, Compos. Math.101 (2) (1996) 179-215. Zbl0936.37042MR1389366
  26. [26] Zung Nguyen Tien, A note on degenerate corank-one singularities of integrable Hamiltonian systems, Comment. Math. Helv.75 (2) (2000) 271-283. Zbl0961.37019MR1774706
  27. [27] Zung Nguyen Tien, Convergence versus integrability in Birkhoff normal form, math.DS/0104279, Ann. of Math. (2004), in press. Zbl1076.37045MR2150385

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.