Counting curves on the plane blown up in three collinear points
- [1] Université de Rennes 1 IRMAR Campus de Beaulieu 35042 Rennes cedex (France)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 5, page 1847-1895
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- V. V. Batyrev, Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), 27-43 Zbl0679.14008MR1032922
- David Bourqui, Fonction zêta des hauteurs des variétés toriques déployées dans le cas fonctionnel, J. Reine Angew. Math. 562 (2003), 171-199 Zbl1038.11039MR2011335
- R. de la Bretèche, Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5, Duke Math. J. 113 (2002), 421-464 Zbl1054.14025MR1909606
- R. de la Bretèche, T. D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I, Michigan Math. J. 55 (2007), 51-80 Zbl1132.14019MR2320172
- R. de la Bretèche, T. D. Browning, U. Derenthal, On Manin’s conjecture for a certain singular cubic surface, Ann. Sci. École Norm. Sup. (4) 40 (2007), 1-50 Zbl1125.14008MR2332351
- T.D. Browning, The Manin conjecture in dimension 2, (2007) MR2362193
- Antoine Chambert-Loir, Yuri Tschinkel, Points of bounded height on equivariant compactifications of vector groups. I, Compositio Math. 124 (2000), 65-93 Zbl0963.11033MR1797654
- Antoine Chambert-Loir, Yuri Tschinkel, On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148 (2002), 421-452 Zbl1067.11036MR1906155
- David A. Cox, The functor of a smooth toric variety, Tohoku Math. J. (2) 47 (1995), 251-262 Zbl0828.14035MR1329523
- David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50 Zbl0846.14032MR1299003
- Ulrich Derenthal, Singular Del Pezzo surfaces whose universal torsors are hypersurfaces, (2006) Zbl1292.14027
- Jens Franke, Yuri I. Manin, Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), 421-435 Zbl0674.14012MR974910
- B. Hassett, Equations of universal torsors and Cox rings, Mathematisches Institut, Georg-August-Universität Göttingen : Seminars Summer Term 2004 (2004), 135-143, Universitätsdrucke Göttingen, Göttingen Zbl1108.14304MR2183138
- Yi Hu, Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348 Zbl1077.14554MR1786494
- Emmanuel Peyre, Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie, (2003) MR2019019
- Per Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque (1998), 91-258 Zbl0959.14007MR1679841