Counting curves on the plane blown up in three collinear points

David Bourqui[1]

  • [1] Université de Rennes 1 IRMAR Campus de Beaulieu 35042 Rennes cedex (France)

Annales de l’institut Fourier (2009)

  • Volume: 59, Issue: 5, page 1847-1895
  • ISSN: 0373-0956

Abstract

top
We prove a version of Manin’s conjecture for the projective plane blown up in three collinear points, the base field being a global field of positive characteristic.

How to cite

top

Bourqui, David. "Comptage de courbes sur le plan projectif éclaté en trois points alignés." Annales de l’institut Fourier 59.5 (2009): 1847-1895. <http://eudml.org/doc/10442>.

@article{Bourqui2009,
abstract = {Nous établissons une version de la conjecture de Manin pour le plan projectif éclaté en trois points alignés, le corps de base étant un corps global de caractéristique positive.},
affiliation = {Université de Rennes 1 IRMAR Campus de Beaulieu 35042 Rennes cedex (France)},
author = {Bourqui, David},
journal = {Annales de l’institut Fourier},
keywords = {Manin’s conjecture; height zeta function; global field of positive characteristic; rational surface; universal torsors; Cox rings},
language = {fre},
number = {5},
pages = {1847-1895},
publisher = {Association des Annales de l’institut Fourier},
title = {Comptage de courbes sur le plan projectif éclaté en trois points alignés},
url = {http://eudml.org/doc/10442},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Bourqui, David
TI - Comptage de courbes sur le plan projectif éclaté en trois points alignés
JO - Annales de l’institut Fourier
PY - 2009
PB - Association des Annales de l’institut Fourier
VL - 59
IS - 5
SP - 1847
EP - 1895
AB - Nous établissons une version de la conjecture de Manin pour le plan projectif éclaté en trois points alignés, le corps de base étant un corps global de caractéristique positive.
LA - fre
KW - Manin’s conjecture; height zeta function; global field of positive characteristic; rational surface; universal torsors; Cox rings
UR - http://eudml.org/doc/10442
ER -

References

top
  1. V. V. Batyrev, Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Math. Ann. 286 (1990), 27-43 Zbl0679.14008MR1032922
  2. David Bourqui, Fonction zêta des hauteurs des variétés toriques déployées dans le cas fonctionnel, J. Reine Angew. Math. 562 (2003), 171-199 Zbl1038.11039MR2011335
  3. R. de la Bretèche, Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5, Duke Math. J. 113 (2002), 421-464 Zbl1054.14025MR1909606
  4. R. de la Bretèche, T. D. Browning, On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I, Michigan Math. J. 55 (2007), 51-80 Zbl1132.14019MR2320172
  5. R. de la Bretèche, T. D. Browning, U. Derenthal, On Manin’s conjecture for a certain singular cubic surface, Ann. Sci. École Norm. Sup. (4) 40 (2007), 1-50 Zbl1125.14008MR2332351
  6. T.D. Browning, The Manin conjecture in dimension 2, (2007) MR2362193
  7. Antoine Chambert-Loir, Yuri Tschinkel, Points of bounded height on equivariant compactifications of vector groups. I, Compositio Math. 124 (2000), 65-93 Zbl0963.11033MR1797654
  8. Antoine Chambert-Loir, Yuri Tschinkel, On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148 (2002), 421-452 Zbl1067.11036MR1906155
  9. David A. Cox, The functor of a smooth toric variety, Tohoku Math. J. (2) 47 (1995), 251-262 Zbl0828.14035MR1329523
  10. David A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50 Zbl0846.14032MR1299003
  11. Ulrich Derenthal, Singular Del Pezzo surfaces whose universal torsors are hypersurfaces, (2006) Zbl1292.14027
  12. Jens Franke, Yuri I. Manin, Yuri Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), 421-435 Zbl0674.14012MR974910
  13. B. Hassett, Equations of universal torsors and Cox rings, Mathematisches Institut, Georg-August-Universität Göttingen : Seminars Summer Term 2004 (2004), 135-143, Universitätsdrucke Göttingen, Göttingen Zbl1108.14304MR2183138
  14. Yi Hu, Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331-348 Zbl1077.14554MR1786494
  15. Emmanuel Peyre, Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie, (2003) MR2019019
  16. Per Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Astérisque (1998), 91-258 Zbl0959.14007MR1679841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.