Sheaves of bounded p-adic logarithmic differential forms
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 3, page 351-386
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGrosse-Klönne, Elmar. "Sheaves of bounded p-adic logarithmic differential forms." Annales scientifiques de l'École Normale Supérieure 40.3 (2007): 351-386. <http://eudml.org/doc/82715>.
@article{Grosse2007,
author = {Grosse-Klönne, Elmar},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {-adic symmetric space; -adic local system; logarithmic differential form},
language = {eng},
number = {3},
pages = {351-386},
publisher = {Elsevier},
title = {Sheaves of bounded p-adic logarithmic differential forms},
url = {http://eudml.org/doc/82715},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Grosse-Klönne, Elmar
TI - Sheaves of bounded p-adic logarithmic differential forms
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 3
SP - 351
EP - 386
LA - eng
KW - -adic symmetric space; -adic local system; logarithmic differential form
UR - http://eudml.org/doc/82715
ER -
References
top- [1] Alon G., de Shalit E., On the cohomology of Drinfel'd's p-adic symmetric domain, Israel J. Math.129 (2002) 1-20. Zbl1060.14026MR1910929
- [2] Breuil C., Invariant et série spécialep-adique, Ann. Sci. École Norm. Sup. (4)37 (4) (2004) 559-610. Zbl1166.11331MR2097893
- [3] de Shalit E., Residues on buildings and de Rham cohomology of p-adic symmetric domains, Duke Math. J.106 (1) (2001) 123-191. Zbl1103.14010MR1810368
- [4] Grosse-Klönne E., Acyclic coefficient systems on buildings, Compositio Math.141 (2005) 769-786. Zbl1138.20034MR2135528
- [5] Grosse-Klönne E., Integral structures in the p-adic holomorphic discrete series, Representation Theory9 (2005) 354-384. Zbl1068.14025MR2133764
- [6] Grosse-Klönne E., Frobenius and monodromy operators in rigid analysis, and Drinfel'd's symmetric space, J. Algebraic Geom.14 (2005) 391-437. Zbl1084.14021MR2129006
- [7] Grosse-Klönne E., Integral structures in automorphic line bundles on the p-adic upper half plane, Math. Ann.329 (2004) 463-493. Zbl1087.11029MR2127986
- [8] Humphreys J.E., Introduction to Lie Algebras and Representation Theory, Springer, Berlin–Heidelberg–New York, 1972. Zbl0254.17004
- [9] Illusie L., Réduction semi-stable ordinaire, cohomologie étale p-adique et cohomologie de de Rham d'après Bloch–Kato et Hyodo, in: Astérisque, vol. 223, SMF, Paris, 1994, pp. 209-220. Zbl1043.11532
- [10] Iovita A., Spiess M., Logarithmic differential forms on p-adic symmetric spaces, Duke Math. J.110 (2) (2001) 253-278. Zbl1100.14505MR1865241
- [11] Ito T., Weight-monodromy conjecture for p-adically uniformized varieties, Invent. Math.159 (3) (2005) 607-656. Zbl1154.14014MR2125735
- [12] Jantzen J.C., Representations of Algebraic Groups, Academic Press, Boston, 1987. Zbl0654.20039MR899071
- [13] Kiehl R., Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math.2 (1967) 256-273. Zbl0202.20201MR210949
- [14] Mustafin G.A., Non-Archimedean uniformization, Math. USSR Sbornik34 (1987) 187-214. Zbl0411.14006
- [15] Rapoport M., Zink T., Period Spaces for p-Divisible Groups, Ann. Math. Studies, vol. 141, Princeton Univ. Press, 1996. Zbl0873.14039MR1393439
- [16] Schneider P., The cohomology of local systems on p-adically uniformized varieties, Math. Ann.293 (1992) 623-650. Zbl0774.14022MR1176024
- [17] Schneider P., Teitelbaum J., p-adic boundary values, in: Cohomologies p-adiques et applications arithmétiques, I, Astérisque, vol. 278, 2002, pp. 51-125. Zbl1051.14024MR1922824
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.