A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations

Walter Craig

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1983)

  • Volume: 10, Issue: 1, page 125-167
  • ISSN: 0391-173X

How to cite

top

Craig, Walter. "A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10.1 (1983): 125-167. <http://eudml.org/doc/83896>.

@article{Craig1983,
author = {Craig, Walter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {nonlinear dissipative hyperbolic equations; Nash-Moser implicit function theorems; Lyapunov-Schmidt decomposition},
language = {eng},
number = {1},
pages = {125-167},
publisher = {Scuola normale superiore},
title = {A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations},
url = {http://eudml.org/doc/83896},
volume = {10},
year = {1983},
}

TY - JOUR
AU - Craig, Walter
TI - A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1983
PB - Scuola normale superiore
VL - 10
IS - 1
SP - 125
EP - 167
LA - eng
KW - nonlinear dissipative hyperbolic equations; Nash-Moser implicit function theorems; Lyapunov-Schmidt decomposition
UR - http://eudml.org/doc/83896
ER -

References

top
  1. [1] W. Craig, A bifurcation theory for periodic dissipative wave eqnations, Ph. D. Thesis, 1981, Courant Institute. 
  2. [2] M.G. Crandall - P.H. Rabinowitz, Bifurcation for simple eigenvalues. J. Functional Analysis, 8 (1971), pp. 321-340. Zbl0219.46015MR288640
  3. [3] M.G. Crandall - P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), pp. 161-180.. Zbl0275.47044MR341212
  4. [4] L. Hörmander, Implicit function theorems, Lectures at Stanford University, Summer 1977, preprint. 
  5. [5] S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math., 33 (1980), pp. 43-101. Zbl0405.35056MR544044
  6. [6] J. Kohn - L. Nirenberg, Non-coercive boundary value problems, Comm. Pure-Appl. Math., 18 (1965), pp. 443-492. Zbl0125.33302MR181815
  7. [7] J. Kohn - L. Nirenberg, Degenerate elliptic-parabolic equations of second order,. Comm. Pure Appl. Math., 29 (1967), pp. 797-872. Zbl0153.14503MR234118
  8. [8] J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. USA, 47 (1961), pp. 1824-1831. Zbl0104.30503MR132859
  9. [9] J. Moser, A rapidly convergent iteration method and won-linear partial differential equations I & II, Ann. Scuola Norm. Sup. Pisa, 20 (1966), pp. 265-315, 499-535. Zbl0144.18202
  10. [10] L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute Lecture Notes, 1974. Zbl0286.47037MR488102
  11. [11] P.H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential' equations I, Comm. Pure Appl. Math., 20 (1967), pp. 145-205. Zbl0152.10003MR206507
  12. [12] P.H. Rabinowitz, Periodic solutions of nonlinear hyperbolic partial differential' equations II, Comm. Pure Appl. Math., 22 (1969), pp. 15-39. Zbl0157.17301MR236504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.