Fibrés paraboliques stables et connexions singulières plates

Olivier Biquard

Bulletin de la Société Mathématique de France (1991)

  • Volume: 119, Issue: 2, page 231-257
  • ISSN: 0037-9484

How to cite

top

Biquard, Olivier. "Fibrés paraboliques stables et connexions singulières plates." Bulletin de la Société Mathématique de France 119.2 (1991): 231-257. <http://eudml.org/doc/87624>.

@article{Biquard1991,
author = {Biquard, Olivier},
journal = {Bulletin de la Société Mathématique de France},
keywords = {theorem of Narasimhan and Seshadri; Uhlenbeck's weak compactness theorem; Sobolev inequalities; orbifold methods},
language = {fre},
number = {2},
pages = {231-257},
publisher = {Société mathématique de France},
title = {Fibrés paraboliques stables et connexions singulières plates},
url = {http://eudml.org/doc/87624},
volume = {119},
year = {1991},
}

TY - JOUR
AU - Biquard, Olivier
TI - Fibrés paraboliques stables et connexions singulières plates
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 2
SP - 231
EP - 257
LA - fre
KW - theorem of Narasimhan and Seshadri; Uhlenbeck's weak compactness theorem; Sobolev inequalities; orbifold methods
UR - http://eudml.org/doc/87624
ER -

References

top
  1. [1]ATIYAH (M.F.) and BOTT (R.). — The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, t. 308, 1982, p. 523-615. Zbl0509.14014MR85k:14006
  2. [2]DONALDSON (S.K.). — A new proof of a theorem of Narasimhan and Seshadri, J. Differential Geom., t. 18, 1983, p. 269-277. Zbl0504.49027MR85a:32036
  3. [3]DONALDSON (S.K.). — Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3), t. 50, 1985, p. 1-26. Zbl0529.53018MR86h:58038
  4. [4]DONALDSON (S.K.). — Infinite determinants, stable bundles and curvature, Duke Math., t. 54, 1987, p. 231-247. Zbl0627.53052MR88g:32046
  5. [5]HITCHIN (N.J.). — The self-duality equations on a Riemann surface, Proc. London Math. Soc.(3), t. 55, 1987, p. 59-126. Zbl0634.53045MR89a:32021
  6. [6]LOCKART (R.B.) and MCOWEN (R.C.). — Elliptic differential operators on noncompact manifolds, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4), t. 12, 1985, p. 409-447. Zbl0615.58048MR87k:58266
  7. [7]MEHTA (V.B.) and SESHADRI (C.S.). — Moduli of vector bundles on curves with parabolic structures, Math. Ann., t. 248, 1980, p. 205-239. Zbl0454.14006MR81i:14010
  8. [8]NARASIMHAN (M.S.) and SESHADRI (C.S.). — Stable and unitary vector bundles on a compact Riemann surface, Ann. Math.(2), t. 82, 1965, p. 540-567. Zbl0171.04803MR32 #1725
  9. [9]SESHADRI (C.S.). — Fibrés vectoriels sur les courbes algébriques, Astérisque, t. 96, 1982. Zbl0517.14008MR85b:14023
  10. [10]SIMPSON (C.T.). — Contructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., t. 1, 1988, p. 867-918. Zbl0669.58008MR90e:58026
  11. [11]SIMPSON (C.T.). — Harmonic bundles on noncompact curves, J. Amer. Math. Soc., t. 3, 1990, p. 713-770. Zbl0713.58012MR91h:58029
  12. [12]UHLENBECK (K.K.). — Connections with Lp bounds on curvature, Comm. Math. Phys., t. 83, 1982, p. 31-42. Zbl0499.58019MR83e:53035
  13. [13]UHLENBECK (K.K.) and YAU (S.T.). — On the existence of Hermitian Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math., t. 39-S, 1986, p. 257-293. Zbl0615.58045MR88i:58154

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.