Bouteilles magnétiques et supraconductivité
- [1] Département de Mathématiques, UMR CNRS 8628, Bât. 425, Université Paris-Sud, F-91405 Orsay Cedex, France
Séminaire Équations aux dérivées partielles (2000-2001)
- Volume: 2000-2001, page 1-20
Access Full Article
topHow to cite
topHelffer, Bernard. "Bouteilles magnétiques et supraconductivité." Séminaire Équations aux dérivées partielles 2000-2001 (2000-2001): 1-20. <http://eudml.org/doc/11007>.
@article{Helffer2000-2001,
affiliation = {Département de Mathématiques, UMR CNRS 8628, Bât. 425, Université Paris-Sud, F-91405 Orsay Cedex, France},
author = {Helffer, Bernard},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-20},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Bouteilles magnétiques et supraconductivité},
url = {http://eudml.org/doc/11007},
volume = {2000-2001},
year = {2000-2001},
}
TY - JOUR
AU - Helffer, Bernard
TI - Bouteilles magnétiques et supraconductivité
JO - Séminaire Équations aux dérivées partielles
PY - 2000-2001
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2000-2001
SP - 1
EP - 20
LA - fre
UR - http://eudml.org/doc/11007
ER -
References
top- S. Agmon : Lectures on exponential decay of solutions of second order elliptic equations. Math. Notes, T. 29, Princeton University Press (1982). Zbl0503.35001MR745286
- J. Avron, I. Herbst et B. Simon : Schrödinger operators with magnetic fields I. Duke Math. J. 45 (1978), p. 847-883. Zbl0399.35029MR518109
- P. Bauman, D. Phillips et Q. Tang : Stable nucleation for the Ginzburg-Landau system with an applied magnetic field. IMA Preprint Series 1416 (1996). Arch. Rational Mech. Anal. 142 (1998), p. 1-43. Zbl0922.35157MR1629119
- J. Berger et J. Rubinstein : On the zero set of the wave function in superconductivity. Comm. in Math. Physics 202 (1999), p. 621-628. Zbl0938.82063MR1690956
- A. Bernoff et P. Sternberg : Onset of superconductivity in decreasing fields for general domains. J. Math. Phys. 39 (1998), p. 1272-1284. Zbl1056.82523MR1608449
- C. Bolley et B. Helffer : An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material. Annales de l’Institut Henri Poincaré (Section Physique Théorique), Vol. 58, n°2 (1993), p. 169-233. Zbl0779.35104
- R. Brummelhuis : Exponential decay in the semi-classical limit for eigenfunctions of Schrödinger operators with magnetic fields and potential which degenerate at infinity. Comm. in PDE 16 (1991), n° 8-9, p. 1489-1502. Zbl0749.35023MR1132793
- S.J. Chapman : Nucleation of superconductivity in decreasing fields. European J. Appl. Math. 5 (1994), Part 1, p. 449-468, Part 2, p. 468-494. Zbl0820.35124MR1309734
- S.J. Chapman, S.D. Howison et J.R. Ockendon, Macroscopic models for superconductivity, SIAM Review 34 (1992), p. 529-560. Zbl0769.73068MR1193011
- J.M. Combes, R. Schrader et R. Seiler : Classical bounds and limits for distributions of Hamiltonian operators in electromagnetic fields. Ann. of Physics 111 (1978), p. 1-18. MR489509
- M. Dauge et B. Helffer : Eigenvalues variation I, Neumann problem for Sturm-Liouville operators. Journal of Differential Equations, Vol. 104, n2, august 1993, p. 243-262. Zbl0784.34021MR1231468
- P.G. De Gennes : Superconductivity of Metals and Alloys, Benjamin, New York and Amsterdam (1966). Zbl0138.22801
- M. Dutour et B. Helffer : On bifurcations from normal solutions for superconducting states. à paraî tre dans Rendiconti del seminario Matematico dell’ Università e del Politecnico di Torino (2001). Zbl1072.37039
- L. Erdös : Rayleigh-type isoperimetric inequality with a homogeneous magnetic field. Calc. Var. and PDE. 4 (1996), p. 283-292. Zbl0846.35094MR1386738
- V. Ginzburg et L. Landau, On the theory of superconductivity, Soviet Phys. JETP 20 (1950), p. 1064-1082.
- T. Giorgi et D. Phillips : The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. Siam J. Math. Anal. 30 (1999), p. 341-359. Zbl0920.35058MR1664763
- B. Helffer : Introduction to the semiclassical analysis for the Schrödinger operator and applications. Springer lecture Notes in Math., n 1336 (1988). Zbl0647.35002
- B. Helffer : Semi-classical analysis for the Schrödinger operator with magnetic wells, (after R. Montgomery, B. Helffer-A. Mohamed), Proceedings of the conference in Minneapolis, The IMA Volumes in Mathematics and its applications, Vol. 95. Quasiclassical Methods, Springer Verlag (1997) p. 99-114. Zbl0887.35131MR1477211
- B. Helffer, T. et M. Hoffmann-Ostenhof et M. Owen : Nodal sets for the groundstate of the Schrödinger operator with zero magnetic field in a non simply connected domain. Comm. in Math. Phys. 202 (1999), p. 629-649. Zbl1042.81012MR1690957
- B. Helffer et A. Mohamed : Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, Journal of Functional Analysis 138, n 1 (1996), p. 40-81. Zbl0851.58046MR1391630
- B. Helffer et A. Morame : Magnetic bottles in connection with superconductivity. Preprint Dec. 2000. Zbl1078.81023MR1856278
- B. Helffer et A. Morame : En préparation.
- B. Helffer et J. Nourrigat : Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser, Boston 1985. Zbl0568.35003MR897103
- B. Helffer et J. Nourrigat : Décroissance à l’infini des fonctions propres de l’opérateur de Schrödinger avec champ électromagnétique polynomial. Journal d’Analyse Mathématique de Jérusalem, Vol. 58 (1992), p. 263-275. Zbl0814.35080
- B. Helffer et X-B. Pan : Upper critical field and location of surface nucleation of superconductivity. En préparation. Zbl1060.35132
- B. Helffer et D. Robert : Puits de potentiel généralisés et asymptotique semi-classique, Annales de l’IHP (section Physique théorique), Vol.41, n3 (1984), p. 291-331. Zbl0565.35082
- B. Helffer et J. Sjöstrand : Multiple wells in the semiclassical limit I. Comm. in PDE 9(4) (1984), p. 337-408. Zbl0546.35053MR740094
- B. Helffer et J. Sjöstrand : Puits multiples en limite semiclassique V - le cas des minipuits -, Volume in honor of S. Mizohata 1986,
- B. Helffer et J. Sjöstrand : Puits multiples en limite semi-classique VI - le cas des puits variétés -, Annales de l’IHP (section physique théorique) vol. 46, 4 (1987), p. 353-373. Zbl0648.35027
- B. Helffer et J. Sjöstrand : Effet tunnel pour l’équation de Schrödinger avec champ magnétique, Annales de l’ENS de Pise, Vol XIV (4) (1987), p. 625-657. Zbl0699.35205
- K. Hornberger et U. Smilansky : The boundary integral method for magnetic billards. J. Phys. A 33 (2000), p. 2829-2855. Zbl0954.81018MR1761644
- Hala T. Jadallah : The onset of superconductivity in a domain with a corner. Preprint Août 2000. Zbl1063.82041MR1852538
- K. H. Kwek et X-B. Pan : Schrödinger operators with non-degenerately vanishing magnetic fiels in bounded domains. Preprint 2000. Zbl1004.35110MR1926871
- K. Lu et X-B. Pan : Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Physica D 127 (1999), p. 73-104. Zbl0934.35174MR1678383
- K. Lu et X-B. Pan : Eigenvalue problems of Ginzburg-Landau operator in bounded domains. Journal of Math. Physics, Vol. 40, n 6, June 1999, p. 2647-2670. Zbl0943.35058MR1694223
- K. Lu et X-B. Pan : Gauge invariant eigenvalue problems on and . Trans. AMS, 352 (3), 2000, p. 1247-1276. Zbl1053.35124MR1675206
- K. Lu et X-B. Pan : Ginzburg-Landau system and surface nucleation of superconductivity. Proceeding of the IMS Workshop on Reaction-Diffusion systems. Chinese University of Hong-Kong, December 6-11 (1999).
- K. Lu et X-B. Pan : Surface nucleation of superconductivity in -dimension. J. of Differential Equations 168(2) (2000), p. 386-452. Zbl0972.35152MR1808455
- H. Matsumoto : Semiclassical asymptotics of eigenvalues for Schrödinger operators with magnetic fields. Journal of Functional Analysis, 129, n 1 (1995), p. 168-190. Zbl0859.35081MR1322647
- H. Matsumoto et N. Ueki : Spectral analysis of Schrödinger operators with magnetic fields. Journal of Functional Analysis 140, n 1, (1996), p. 218-255. Zbl0866.35083MR1404582
- A. Melin : Lower bounds for pseudo-differential operators, Ark. Math. 9 (1971), p. 117-140. Zbl0211.17102MR328393
- R. Montgomery : Hearing the zero locus of a magnetic field. Comm. Math. Physics 168 (1995), p. 651-675. Zbl0827.58076MR1328258
- X-B. Pan : Upper critical for superconductors with edges and corners. Preprint 2000. Soumis.
- M. del Pino, P.L. Felmer et P. Sternberg : Boundary concentration for eigenvalue problems related to the onset of superconductivity. Comm. Math. Phys. 210, (2000), p. 413-446. Zbl0982.35077MR1776839
- M. Reed et B. Simon : Methods of modern Mathematical Physics, IV : Analysis of operators. Academic Press, New York, 1978. Zbl0401.47001MR493421
- D. Saint-James et P. De Gennes, Onset of superconductivity in decreasing fields, Physics Letters, 6 :(5)(1963), p. 306-308.
- D. Saint-James, G. Sarma et E.J. Thomas, Type II Superconductivity, Pergamon Press, Oxford, 1969.
- E. Sandier et S. Serfaty : Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Annales IHP (Analyse non-linéaire)17 (2000), n° 1, p. 119-145. Zbl0947.49004MR1743433
- I. Shigekawa : Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold. Journal of Functional Analysis, Vol. 75, n 1, Nov. 1987. Zbl0629.58023MR911202
- B. Simon : Semi-classical analysis of low lying eigenvalues I, Ann. Inst. Henri Poincaré 38 (4) (1983), p. 295-307. Zbl0526.35027MR708966
- M. Tinkham, Introduction to Superconductivity, McGraw-Hill Inc., New York, 1975.
- N. Ueki : Lower bounds for the spectra of Schrödinger operators with magnetic fields, Journal of Functional Analysis 120, n 2 (1994), p. 344-379. Erratum n 11 (1995), p. 257-259. Zbl0805.35025MR1266313
- N. Ueki : Asymptotics of the infimum of the spectrum of Schrödinger operators with magnetic fields. J. Math. Kyoto Univ. 37, n 4 (1998), p. 615-638. Zbl0928.35032MR1625960
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.